Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask (Paper Explained)

Автор: Yannic Kilcher

Загружено: 2020-04-29

Просмотров: 14128

Описание:

This paper dives into the intrinsics of the Lottery Ticket Hypothesis and attempts to shine some light on what's important and what isn't.

https://arxiv.org/abs/1905.01067

Abstract:
The recent "Lottery Ticket Hypothesis" paper by Frankle & Carbin showed that a simple approach to creating sparse networks (keeping the large weights) results in models that are trainable from scratch, but only when starting from the same initial weights. The performance of these networks often exceeds the performance of the non-sparse base model, but for reasons that were not well understood. In this paper we study the three critical components of the Lottery Ticket (LT) algorithm, showing that each may be varied significantly without impacting the overall results. Ablating these factors leads to new insights for why LT networks perform as well as they do. We show why setting weights to zero is important, how signs are all you need to make the reinitialized network train, and why masking behaves like training. Finally, we discover the existence of Supermasks, masks that can be applied to an untrained, randomly initialized network to produce a model with performance far better than chance (86% on MNIST, 41% on CIFAR-10).

Authors: Hattie Zhou, Janice Lan, Rosanne Liu, Jason Yosinski

Links:
YouTube:    / yannickilcher  
Twitter:   / ykilcher  
BitChute: https://www.bitchute.com/channel/yann...
Minds: https://www.minds.com/ykilcher

Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask (Paper Explained)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

J. Frankle & M. Carbin: The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks

J. Frankle & M. Carbin: The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks

13,983,816 and the Lottery - Numberphile

13,983,816 and the Lottery - Numberphile

What is the Lottery Ticket Hypothesis, and why is it important?

What is the Lottery Ticket Hypothesis, and why is it important?

[Classic] Deep Residual Learning for Image Recognition (Paper Explained)

[Classic] Deep Residual Learning for Image Recognition (Paper Explained)

Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained)

Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained)

Mathematician explains the 'simple' loophole used to win the lottery | 60 Minutes Australia

Mathematician explains the 'simple' loophole used to win the lottery | 60 Minutes Australia

Как сжимаются изображения? [46 МБ ↘↘ 4,07 МБ] JPEG в деталях

Как сжимаются изображения? [46 МБ ↘↘ 4,07 МБ] JPEG в деталях

SynFlow: Pruning neural networks without any data by iteratively conserving synaptic flow

SynFlow: Pruning neural networks without any data by iteratively conserving synaptic flow

Trying Out ChatGPT's Advanced Data Analysis Feature with Powerball Lottery Data

Trying Out ChatGPT's Advanced Data Analysis Feature with Powerball Lottery Data

The Lottery Ticket Hypothesis and pruning in PyTorch

The Lottery Ticket Hypothesis and pruning in PyTorch

Feedback Transformers: Addressing Some Limitations of Transformers with Feedback Memory (Explained)

Feedback Transformers: Addressing Some Limitations of Transformers with Feedback Memory (Explained)

The Lottery Ticket Hypothesis Explained!

The Lottery Ticket Hypothesis Explained!

Harvard Medical AI: Elaine Liu presents ALBEF – Align before Fuse Vision and Language Representation

Harvard Medical AI: Elaine Liu presents ALBEF – Align before Fuse Vision and Language Representation

SupSup: Supermasks in Superposition (Paper Explained)

SupSup: Supermasks in Superposition (Paper Explained)

Поиск нейронной архитектуры без обучения (с пояснениями)

Поиск нейронной архитектуры без обучения (с пояснениями)

Image GPT: Generative Pretraining from Pixels (Paper Explained)

Image GPT: Generative Pretraining from Pixels (Paper Explained)

A Unified Lottery Ticket Hypothesis for Graph Neural Networks | Tianlong Chen

A Unified Lottery Ticket Hypothesis for Graph Neural Networks | Tianlong Chen

Underspecification Presents Challenges for Credibility in Modern Machine Learning (Paper Explained)

Underspecification Presents Challenges for Credibility in Modern Machine Learning (Paper Explained)

Proving the Lottery Ticket Hypothesis: Pruning is All You Need | AISC Livestream with the Author

Proving the Lottery Ticket Hypothesis: Pruning is All You Need | AISC Livestream with the Author

LambdaNetworks: Modeling long-range Interactions without Attention (Paper Explained)

LambdaNetworks: Modeling long-range Interactions without Attention (Paper Explained)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com