Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Christopher D Manning: A Neural Network Model That Can Reason (ICLR 2018 invited talk)

Автор: Steven Van Vaerenbergh

Загружено: 2018-05-04

Просмотров: 10283

Описание:

Abstract: Deep learning has had enormous success on perceptual tasks but still struggles in providing a model for inference. To address this gap, we have been developing Memory-Attention-Composition networks (MACnets). The MACnet design provides a strong prior for explicitly iterative reasoning, enabling it to learn explainable, structured reasoning, as well as achieve good generalization from a modest amount of data. The model builds from the great success of existing recurrent cells such as LSTMs: A MacNet is a sequence of a single recurrent Memory, Attention, and Composition (MAC) cell. However, its design imposes structural constraints on the operation of each cell and the interactions between them, incorporating explicit control and soft attention mechanisms. We demonstrate the model’s strength and robustness on the challenging CLEVR dataset for visual reasoning (Johnson et al. 2016), achieving a new state-of-the-art 98.9% accuracy, halving the error rate of the previous best model. More importantly, we show that the new model is more data-efficient, achieving good results from even a modest amount of training data. Joint work with Drew Hudson.

Christopher D Manning: A Neural Network Model That Can Reason (ICLR 2018 invited talk)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Kristen Grauman: Visual Learning With Unlabeled Video and Look-Around Policies ICLR2018 invited talk

Kristen Grauman: Visual Learning With Unlabeled Video and Look-Around Policies ICLR2018 invited talk

The Ridiculous Engineering Of The World's Most Important Machine

The Ridiculous Engineering Of The World's Most Important Machine

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

LSTM is dead. Long Live Transformers!

LSTM is dead. Long Live Transformers!

Geoffrey Hinton: The Foundations of Deep Learning

Geoffrey Hinton: The Foundations of Deep Learning

Управление поведением LLM без тонкой настройки

Управление поведением LLM без тонкой настройки

RNN Symposium 2016: Alex Graves - Differentiable Neural Computer

RNN Symposium 2016: Alex Graves - Differentiable Neural Computer

Building Neural Network Models That Can Reason

Building Neural Network Models That Can Reason

«Мамба» — замена «Трансформерам»?

«Мамба» — замена «Трансформерам»?

Bernhard Schölkopf: Learning Causal Mechanisms (ICLR invited talk)

Bernhard Schölkopf: Learning Causal Mechanisms (ICLR invited talk)

How Convolutional Neural Networks work

How Convolutional Neural Networks work

The Power of Self-Learning Systems

The Power of Self-Learning Systems

Automated Reasoning Basics | Douglas Lenat and Lex Fridman

Automated Reasoning Basics | Douglas Lenat and Lex Fridman

An Introduction to LSTMs in Tensorflow

An Introduction to LSTMs in Tensorflow

Ian Goodfellow: Adversarial Machine Learning (ICLR 2019 invited talk)

Ian Goodfellow: Adversarial Machine Learning (ICLR 2019 invited talk)

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Erik Brynjolfsson: What Can Machine Learning Do? Workforce Implications (ICLR 2018)

Erik Brynjolfsson: What Can Machine Learning Do? Workforce Implications (ICLR 2018)

Michael Bronstein - Geometric deep learning on graphs: going beyond Euclidean data

Michael Bronstein - Geometric deep learning on graphs: going beyond Euclidean data

Juergen Schmidhuber: Godel Machines, Meta-Learning, and LSTMs | Lex Fridman Podcast #11

Juergen Schmidhuber: Godel Machines, Meta-Learning, and LSTMs | Lex Fridman Podcast #11

History of Bayesian Neural Networks (Keynote talk)

History of Bayesian Neural Networks (Keynote talk)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]