Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Hydrological Modeling using Google Earth Engine (GEE) and Long Short Term Memory (LSTM) ML Model

Автор: TheGeoICT

Загружено: 2023-08-17

Просмотров: 12007

Описание:

🌊📈 Welcome to this tutorial! This training was given by Biplov Bhandari on Aug 10 for the SERVIR Amazonia TensorFlow Training in Peru (Aug 8 - Aug 11) 🇵🇪.

For all the training materials, check out the links: [https://github.com/SERVIR-Amazonia/Pe...] and [https://developmentseed.org/tensorflo...]. Now, let's dive into what this tutorial is all about! 💧🔍

In this notebook, we will walk you through a step-by-step example of accessing observed and forcing data for hydrologic modeling. We will also demonstrate how to train a powerful Long-Short-Term Memory (LSTM) model to simulate streamflow. 💧🚀 To do this, we will leverage the capabilities of Google Earth Engine (GEE) to access meteorological data as inputs for our model. 💡🛰️

Our example is inspired by the following paper: "Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks". 📚🌧️ Let"s dive in and get started with the exciting world of hydrologic modeling and LSTM networks! 🌊📊 The notebook was originally developed by Kel Markert and now modified by Biplov Bhandari for this training tutorial.

Access the full notebook here: [https://nbviewer.org/github/biplovbha...]. Feel free to click "Open in Colab" if you're excited to run it locally. 📑💻

Don't miss out on this opportunity to enhance your skills and understanding! 🌊🔗

#hydrology #googleearthengine #datascience #streamflow #serviramazonia #tensorflow #peru #lstm #ml #servir #machinelearning #eo

Hydrological Modeling using Google Earth Engine (GEE) and Long Short Term Memory (LSTM) ML Model

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Day 2 - Intro to Deep Learning (ML) with TensorFlow and Google Earth Engine (GEE)

Day 2 - Intro to Deep Learning (ML) with TensorFlow and Google Earth Engine (GEE)

2019: Long Short-Term Memory (LSTM) networks for rainfall-runoff modeling

2019: Long Short-Term Memory (LSTM) networks for rainfall-runoff modeling

Introduction to Remote Sensing - End-to-End GEE

Introduction to Remote Sensing - End-to-End GEE

Using LSTM to predict hydrologic extremes under climate change and landuse scenarios in Mekong Basin

Using LSTM to predict hydrologic extremes under climate change and landuse scenarios in Mekong Basin

Webinar: STACK and HOOK – Tools and Applications for Data Processing and Analysis

Webinar: STACK and HOOK – Tools and Applications for Data Processing and Analysis

Google Earth Engine 101: An Introduction for Complete Beginners

Google Earth Engine 101: An Introduction for Complete Beginners

Marine Debris Detection Using Planet Data

Marine Debris Detection Using Planet Data

NASA ARSET: Introduction to the VIC Hydrological Model, Part 1/3

NASA ARSET: Introduction to the VIC Hydrological Model, Part 1/3

(1/4) Beginners crash course of Python in Earth Engine for Environmental Insights |Geo for Good 2023

(1/4) Beginners crash course of Python in Earth Engine for Environmental Insights |Geo for Good 2023

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

NASA ARSET: Overview of Remote Sensing-Based Input Data for VIC, Part 2/3

NASA ARSET: Overview of Remote Sensing-Based Input Data for VIC, Part 2/3

4 часа Шопена для обучения, концентрации и релаксации

4 часа Шопена для обучения, концентрации и релаксации

Прогнозирование LST с учетом численности населения, количества осадков и высоты над уровнем моря ...

Прогнозирование LST с учетом численности населения, количества осадков и высоты над уровнем моря ...

AI Hydrology In-practice: Lessons from 6 years of operational streamflow forecasting: Alden Sampson

AI Hydrology In-practice: Lessons from 6 years of operational streamflow forecasting: Alden Sampson

Long Short-Term Memory (LSTM), Clearly Explained

Long Short-Term Memory (LSTM), Clearly Explained

Deep Learning for Rainfall-Runoff Modeling

Deep Learning for Rainfall-Runoff Modeling

Machine Learning in Hydrology

Machine Learning in Hydrology

Deep learning in Google Earth Engine with Jake Wilkins

Deep learning in Google Earth Engine with Jake Wilkins

Groundwater level modeling using machine learning (ML) | GRANDE-U Webinar Feb 7

Groundwater level modeling using machine learning (ML) | GRANDE-U Webinar Feb 7

Geo for Good 2022: Deep Learning with TensorFlow and Earth Engine

Geo for Good 2022: Deep Learning with TensorFlow and Earth Engine

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]