Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Particle Kinetics: Normal-Tangential, Polar, Cylindrical Coordinates; Solving Accelerating 3D System

Автор: TheBom_PE

Загружено: 2018-06-16

Просмотров: 5057

Описание:

LECTURE 05
Here, the equations of motion (EoM: F=ma) for particles in normal-tangential, polar, and cylindrical coordinate systems are stated, along with the kinematic equations for acceleration in each direction of each coordinate system. Formulas are derived to determine the angles between the tangent line to the path of motion and the radial direction and the z direction. An example is completed wherein a ball is pushed up a variable-radius helical ramp by a radial arm driven by a central shaft upon which a known torque is applied. The ramp then transitions into a planar parabolic shape. The contact forces applied to the ball and components of acceleration of the ball are found immediately before and after the transition from the helical portion to the parabolic portion. In the helical portion, the cylindrical equations of motion lead to a 3 equation-3 unknown system that is solved to find the force components and the angular acceleration. To properly set up the equations of motion, angles between the tangent line to the path and the radial direction and the z direction are computed. After the transition to the parabolic portion of the track, equations of motion are written in n-t coordinates. The tangential velocity is found based on the velocity at the end of the helical portion of the track, and the radius of curvature is found based on the equation defining the shape of the parabola. The velocity of the ball and the radius of curvature are used to find the normal component of acceleration, which is then used to find the contact force applied to the ball by the track. The tangential component of acceleration is computed based on the component of the ball's weight that aligns with the tangential direction.

Playlist for MEEN203 (Dynamics):
   • MEMT 203: Dynamics  

This lecture was recorded on June 14, 2018. All retainable rights are claimed by Michael Swanbom.

Please subscribe to my YouTube channel and follow me on Twitter: @TheBom_PE

Thank you for your support!

Particle Kinetics: Normal-Tangential, Polar, Cylindrical Coordinates; Solving Accelerating 3D System

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Two Balls Slide with Friction on Inclined Planes | Dependent Motion Relationship with Law of Cosines

Two Balls Slide with Friction on Inclined Planes | Dependent Motion Relationship with Law of Cosines

Polar & Cylindrical Coordinate System Kinematics | Centripetal & Coriolis Acceleration for Particles

Polar & Cylindrical Coordinate System Kinematics | Centripetal & Coriolis Acceleration for Particles

Нормальная и тангенциальная системы координат | Оси, выровненные с траекторией | Центростремитель...

Нормальная и тангенциальная системы координат | Оси, выровненные с траекторией | Центростремитель...

Why particles might not exist | Sabine Hossenfelder, Hilary Lawson, Tim Maudlin

Why particles might not exist | Sabine Hossenfelder, Hilary Lawson, Tim Maudlin

Эффект Джанибекова

Эффект Джанибекова

Particle Kinetics: Equations of Motion | Integrating F(t) To Find Constrained & Unconstrained Motion

Particle Kinetics: Equations of Motion | Integrating F(t) To Find Constrained & Unconstrained Motion

Преломление и «замедление» света | По мотивам лекции Ричарда Фейнмана

Преломление и «замедление» света | По мотивам лекции Ричарда Фейнмана

Kinetic Moments: Summing Moments About Axes NOT Through the Center of Gravity in Accelerating Bodies

Kinetic Moments: Summing Moments About Axes NOT Through the Center of Gravity in Accelerating Bodies

Теорема Гаусса о дивергенции. Получите ГЛУБОКУЮ интуицию.

Теорема Гаусса о дивергенции. Получите ГЛУБОКУЮ интуицию.

Rectilinear & Curvilinear Motion | Calculus of Position, Velocity & Acceleration | Specified Paths

Rectilinear & Curvilinear Motion | Calculus of Position, Velocity & Acceleration | Specified Paths

Intro to Rigid Body Kinematics: Fixed-Axis Rotation | Cross Products in the Casio fx-115es plus

Intro to Rigid Body Kinematics: Fixed-Axis Rotation | Cross Products in the Casio fx-115es plus

Каково это — изобретать математику?

Каково это — изобретать математику?

Cartesian vs. Polar Coordinate Systems | G-code Tutorial

Cartesian vs. Polar Coordinate Systems | G-code Tutorial

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Lec12 - Particle Kinetics (Theory & Examples) Force-Mass-Acceleration using Polar/Cyl. Coordinates

Lec12 - Particle Kinetics (Theory & Examples) Force-Mass-Acceleration using Polar/Cyl. Coordinates

3D Stress Transformation and Principal Stresses | Derivation & Example using Casio fx-115es plus

3D Stress Transformation and Principal Stresses | Derivation & Example using Casio fx-115es plus

Velocity, Acceleration in Polar Coordinates

Velocity, Acceleration in Polar Coordinates

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Как возникает тяга в дымовых трубах?

Как возникает тяга в дымовых трубах?

Rigid Body Kinetics | Mass Moment of Inertia | Fixed Axis Rotation | Parallel Axis Theorem

Rigid Body Kinetics | Mass Moment of Inertia | Fixed Axis Rotation | Parallel Axis Theorem

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]