#9thClass
Автор: Students Hope
Загружено: 2022-08-06
Просмотров: 211
#9thClass #Leacture | Base and Derived Units | Physics | Students Hope Ch#1
In any system of units, the units for some physical quantities must be defined through a measurement process. These are called the base quantities for that system and their units are the system’s base units. All other physical quantities can then be expressed as algebraic combinations of the base quantities. Each of these physical quantities is then known as a derived quantity and each unit is called a derived unit. The choice of base quantities is somewhat arbitrary, as long as they are independent of each other and all other quantities can be derived from them. Typically, the goal is to choose physical quantities that can be measured accurately to a high precision as the base quantities. The reason for this is simple. Since the derived units can be expressed as algebraic combinations of the base units, they can only be as accurate and precise as the base units from which they are derived.
Based on such considerations, the International Standards Organization recommends using seven base quantities, which form the International System of Quantities (ISQ). These are the base quantities used to define the SI base units. (Figure) lists these seven ISQ base quantities and the corresponding SI base units.
#Base_Units
#Derived units
ISQ Base Quantities and Their SI Units
ISQ Base Quantity SI Base Unit
Length meter (m)
Mass kilogram (kg)
Time second (s)
Electrical current ampere (A)
Thermodynamic temperature kelvin (K)
Amount of substance mole (mol)
Luminous intensity candela (cd)
You are probably already familiar with some derived quantities that can be formed from the base quantities in (Figure). For example, the geometric concept of area is always calculated as the product of two lengths. Thus, area is a derived quantity that can be expressed in terms of SI base units using square meters
(
m
×
m
=
m
2
)
.
Similarly, volume is a derived quantity that can be expressed in cubic meters
(
m
3
)
.
Speed is length per time; so in terms of SI base units, we could measure it in meters per second (m/s). Volume mass density (or just density) is mass per volume, which is expressed in terms of SI base units such as kilograms per cubic meter (kg/m3). Angles can also be thought of as derived quantities because they can be defined as the ratio of the arc length subtended by two radii of a circle to the radius of the circle. This is how the radian is defined. Depending on your background and interests, you may be able to come up with other derived quantities, such as the mass flow rate (kg/s) or volume flow rate (m3/s) of a fluid, electric charge
(
A
⋅
s
)
,
mass flux density
[kg/
(
m
2
⋅
s)],
and so on. We will see many more examples throughout this text. For now, the point is that every physical quantity can be derived from the seven base quantities in (Figure), and the units of every physical quantity can be derived from the seven SI base units.
For the most part, we use SI units in this text. Non-SI units are used in a few applications in which they are in very common use, such as the measurement of temperature in degrees Celsius
(
°
C
)
,
the measurement of fluid volume in liters (L), and the measurement of energies of elementary particles in electron-volts (eV). Whenever non-SI units are discussed, they are tied to SI units through conversions. For example, 1 L is
10
−
3
m
3
.
Check out a comprehensive source of information on SI units at the National Institute of Standards and Technology (NIST) Reference on Constants, Units, and Uncertainty.
Units of Time, Length, and Mass: The Second, Meter, and Kilogram
The initial chapters in this textbook are concerned with mechanics, fluids, and waves. In these subjects all pertinent physical quantities can be expressed in terms of the base units of length, mass, and time. Therefore, we now turn to a discussion of these three base units, leaving discussion of the others until they are needed later.
The second
The SI unit for time, the second (abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar day. More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a nonvarying or constant physical phenomenon (because the solar day is getting longer as a result of the very gradual slowing of Earth’s rotation). Cesium atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967, the second was redefined as the time required for 9,192,631,770 of these vibrations to occur ((Figure)). Note that this may seem like more precision than you would ever need, but it isn’t—GPSs rely on the precision of atomic clocks to be able to give you turn-by-turn directions on the surface of Earth, far from the satellites broadcasting their location. imran khan iman gadzhi shpw affiliate marketing neet 2022
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: