Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

pomegranate | Fast and Flexible Probabilistic Modeling in Python | SciPy 2017 | Jacob Schreiber

Автор: Enthought

Загружено: 2017-07-17

Просмотров: 9521

Описание:

pomegranate is a python package that extends the ideas behind scikit-learn to probabilistic models such as mixtures, Bayesian networks, and hidden Markov models. pomegranate is built to be modular by separating out the probability distributions from the models themselves, allowing both arbitrary distributions to be used for any model, and making the modeling of different features with different distributions a breeze. pomegranate was built with large quantities of data in mind, supporting both an out-of-core API for when your data doesn't fit in memory, built-in multi-threaded parallelism made possibly by releasing the GIL, and most recently GPU support for large Gaussian models. This talk will be an overview of the most important features behind pomegranate and motivate the concept of probabilistic modeling.

pomegranate | Fast and Flexible Probabilistic Modeling in Python | SciPy 2017 | Jacob Schreiber

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Martin Jankowiak - Brief Introduction to Probabilistic Programming

Martin Jankowiak - Brief Introduction to Probabilistic Programming

Я совершил дневную торговлю на $1000 с использованием скрытой модели Маркова

Я совершил дневную торговлю на $1000 с использованием скрытой модели Маркова

Jacob Schreiber | Pomegranate: fast and flexible probabilistic models in python

Jacob Schreiber | Pomegranate: fast and flexible probabilistic models in python

Detecting Anomalies Using Statistical Distances | SciPy 2018 | Charles Masson

Detecting Anomalies Using Statistical Distances | SciPy 2018 | Charles Masson

Chris Fonnesbeck - Probabilistic Python: An Introduction to Bayesian Modeling with PyMC

Chris Fonnesbeck - Probabilistic Python: An Introduction to Bayesian Modeling with PyMC

Efficient Bayesian inference with Hamiltonian Monte Carlo -- Michael Betancourt (Part 1)

Efficient Bayesian inference with Hamiltonian Monte Carlo -- Michael Betancourt (Part 1)

Я в опасности

Я в опасности

Frequentism and Bayesianism: What's the Big Deal? | SciPy 2014 | Jake VanderPlas

Frequentism and Bayesianism: What's the Big Deal? | SciPy 2014 | Jake VanderPlas

Tutorial Series 08 | Intro to Scientific Computing in Julia

Tutorial Series 08 | Intro to Scientific Computing in Julia

Probabilistic Graphical Models in Python

Probabilistic Graphical Models in Python

Probabilistic Programming and Bayesian Modeling with PyMC3 - Christopher Fonnesbeck

Probabilistic Programming and Bayesian Modeling with PyMC3 - Christopher Fonnesbeck

Eric J  Ma   Bayesian Statistical Analysis with Python   PyCon 2017

Eric J Ma Bayesian Statistical Analysis with Python PyCon 2017

Jacob Schrieber: Pomegranate: Fast and Flexible Probabilistic Modeling in Python

Jacob Schrieber: Pomegranate: Fast and Flexible Probabilistic Modeling in Python

Chris Fonnesbeck: A Primer on Gaussian Processes for Regression Analysis | PyData NYC 2019

Chris Fonnesbeck: A Primer on Gaussian Processes for Regression Analysis | PyData NYC 2019

A Python API for Earth | SciPy 2017 | Sam Skillman

A Python API for Earth | SciPy 2017 | Sam Skillman

How Bayes Theorem works

How Bayes Theorem works

[08x11] What is Probabilistic Programming?

[08x11] What is Probabilistic Programming?

Bayesian Machine Learning: A PyMC-Centric Introduction (Quan Nguyen)

Bayesian Machine Learning: A PyMC-Centric Introduction (Quan Nguyen)

Шокирующее заявление Трампа / Выход страны из НАТО

Шокирующее заявление Трампа / Выход страны из НАТО

Bayesian Data Science: Probabilistic Programming | SciPy 2019 Tutorial | Eric Ma

Bayesian Data Science: Probabilistic Programming | SciPy 2019 Tutorial | Eric Ma

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com