Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Echelon Forms, Pivots & Pivot Columns (Linear Algebra)

Автор: Houston Math Prep

Загружено: 2023-01-15

Просмотров: 3181

Описание:

0:00 Useful Views of Augmented Matrices
1:08 Echelon Form & Leading Entries
3:56 Reduced Echelon Form & Pivot Positions
5:01 Uniqueness of Reduced Echelon Form

We explain what it means for a matrix to be in echelon form and reduced echelon form in this video from our linear algebra series. We begin by looking at examples of systems of linear equations and the augmented matrices that represent them. We explore how having zero entries in certain places in a matrix can help us more easily determine the solution for a system of equations.

We introduce leading entries in a matrix as the first nonzero entry in row, and we discuss the requirement of the locations of leading entries in an echelon form of a matrix. Not all rows will have a leading entry. All entries below a leading entry in a column must be zero. We then explain the requirement for a matrix to be in reduced echelon form. Each leading entry of 1 in reduced echelon form is called a pivot position, and each column containing a pivot position is referred to as a pivot column.

Finally, we mention how the reduced echelon form of a matrix is unique, but the echelon form of a matrix is not unique.

Echelon Forms, Pivots & Pivot Columns (Linear Algebra)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Elementary Row Operations (Linear Algebra)

Elementary Row Operations (Linear Algebra)

Суть линейной алгебры: #7. Обратные матрицы, пространство столбцов и нуль-пространство

Суть линейной алгебры: #7. Обратные матрицы, пространство столбцов и нуль-пространство

The Row Reduction Algorithm (Linear Algebra)

The Row Reduction Algorithm (Linear Algebra)

[Linear Algebra] Echelon Form and Pivots

[Linear Algebra] Echelon Form and Pivots

Find Pivots, Pivot Rows, and Pivot Columns with Row Echelon Form | Linear Algebra

Find Pivots, Pivot Rows, and Pivot Columns with Row Echelon Form | Linear Algebra

How to find the determinant using Sarrus’s Rule, Cofactor expansion, Invertibility | Linear Algebra

How to find the determinant using Sarrus’s Rule, Cofactor expansion, Invertibility | Linear Algebra

Row echelon form vs Reduced row echelon form

Row echelon form vs Reduced row echelon form

Объяснение ступенчатой ​​формы матрицы | Линейная алгебра

Объяснение ступенчатой ​​формы матрицы | Линейная алгебра

Matrices Top 10 Must Knows (ultimate study guide)

Matrices Top 10 Must Knows (ultimate study guide)

1.2 - Row Reduction and Echelon Forms

1.2 - Row Reduction and Echelon Forms

Reduced Row Echelon Form of the Matrix Explained | Linear Algebra

Reduced Row Echelon Form of the Matrix Explained | Linear Algebra

Diagonalization

Diagonalization

How to Find the Pivots and Pivot Columns of a Matrix From Row Echelon Form

How to Find the Pivots and Pivot Columns of a Matrix From Row Echelon Form

Basic & Free Variables

Basic & Free Variables

ЧИТАЛ КНИГИ КАЖДЫЙ ДЕНЬ и вот что понял

ЧИТАЛ КНИГИ КАЖДЫЙ ДЕНЬ и вот что понял

How to Study Math Like a Genius (And Actually Remember It)

How to Study Math Like a Genius (And Actually Remember It)

Basic Variables & Free Variables (Linear Algebra)

Basic Variables & Free Variables (Linear Algebra)

Row reduction, row-echelon form and reduced row-echelon form

Row reduction, row-echelon form and reduced row-echelon form

The intuition behind Fourier and Laplace transforms I was never taught in school

The intuition behind Fourier and Laplace transforms I was never taught in school

Full Example: Diagonalizing a Matrix

Full Example: Diagonalizing a Matrix

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]