Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Distinguished Lecture: The unreasonable effectiveness of SAT solvers

Автор: Waterloo Engineering

Загружено: 2021-07-09

Просмотров: 2162

Описание:

Over the last two decades, software engineering (broadly construed to include testing, analysis, synthesis, verification, and security) has witnessed a silent revolution in the form of Boolean SAT and SMT solvers. These solvers are now integral to many testing, analysis, synthesis, and verification approaches. This is largely due to a dramatic improvement in the scalability of these solvers vis-à-vis large real-world formulas. What is surprising is that the Boolean satisfiability problem is NP-complete, believed to be intractable, and yet these solvers easily solve industrial instances containing tens of millions of variables and clauses in them. How can that be?

In my talk, I will address this question of why SAT solvers are so efficient through the lens of machine learning (ML) as well as ideas from (parameterized) proof complexity. While the focus of my talk is almost entirely empirical, I will show how we can leverage theoretical ideas to not only deepen our understanding but also to build better SAT solvers. I will argue that SAT solvers are best viewed as proof systems, composed of two kinds of sub-routines: ones that implement proof rules and others that are prediction engines that optimize some metric correlated with solver running time. These prediction engines can be built using ML techniques, whose aim is to structure solver proofs in an optimal way. Thus, two major paradigms of AI, namely machine learning and logical deduction, are brought together in a principled way to design efficient SAT solvers. A result of my research is the MapleSAT solver that has been the winner of several recent international SAT competitions and is widely used in industry and academia.

Biography:
Vijay Ganesh is an associate professor at the University of Waterloo and the Director of the Waterloo Artificial Intelligence Institute. Prior to joining Waterloo in 2012, he was a research scientist at MIT (2007-2012) and completed his PhD in computer science from Stanford in 2007.

Vijay's primary area of research is the theory and practice of SAT/SMT solvers aimed at AI, software engineering, security, mathematics, and physics. In this context he led the development of many SAT/SMT solvers, most notably, STP, Z3 string, MapleSAT, and MathCheck. He has also proved several decidability and complexity results in the context of first-order theories. He has won over 25 awards, honors, and medals to-date for his research, including an ACM Impact Paper Award at ISSTA 2019, ACM Test of Time Award at CCS 2016, and a Ten-Year Most Influential Paper citation at DATE 2008. He is the Editor-in-Chief of the Springer book series "Progress in Computer Science and Applied Logic" (PCSAL) and has co-chaired many conferences, workshops, and seminars including a Simons Institute semester at Berkeley on Boolean Satisfiability in 2021.

Find out more: https://uwaterloo.ca/engineering/

Twitter:   / waterlooeng  
Facebook:   / uwaterlooengineering  
Instagram:   / uwaterlooeng  
LinkedIn Group:   / 56527  
LinkedIn Profile:   / faculty-of-engineering  
Waterloo Engineering Hub: https://uwaterloo.ca/engineering/wate...

Distinguished Lecture: The unreasonable effectiveness of SAT solvers

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Взгляд изнутри на SAT Solvers — Джон Смок

Взгляд изнутри на SAT Solvers — Джон Смок

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Satisfiability: Theory, Practice, and Beyond

Satisfiability: Theory, Practice, and Beyond

5454 Project (Spring 2019 ): Algorithms for Solving SAT Problems: Conflict-Driven Clause Learning

5454 Project (Spring 2019 ): Algorithms for Solving SAT Problems: Conflict-Driven Clause Learning

Kenneth A. Ribet,

Kenneth A. Ribet, "A 2020 View of Fermat's Last Theorem"

The SAT Question Everyone Got Wrong

The SAT Question Everyone Got Wrong

The Satisfiability Problem

The Satisfiability Problem

Engineering Student Stories: Materials, Medicine, & Innovation

Engineering Student Stories: Materials, Medicine, & Innovation

"z3" is actual magic (intermediate) anthony explains #425

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Проблема выполнимости и SAT находится в NP

Проблема выполнимости и SAT находится в NP

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Мир поклонялся его ученикам, но игнорировал человека, который их всех обучил

Мир поклонялся его ученикам, но игнорировал человека, который их всех обучил

ЛУЧШАЯ БЕСПЛАТНАЯ НЕЙРОСЕТЬ Google, которой нет аналогов

ЛУЧШАЯ БЕСПЛАТНАЯ НЕЙРОСЕТЬ Google, которой нет аналогов

Все, что вам нужно знать о теории управления

Все, что вам нужно знать о теории управления

GraphRAG: союз графов знаний и RAG: Эмиль Эйфрем

GraphRAG: союз графов знаний и RAG: Эмиль Эйфрем

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

SAT-Solving

SAT-Solving

Z3 Explained - Satisfiability Modulo Theories & SMT Solvers

Z3 Explained - Satisfiability Modulo Theories & SMT Solvers

Tips for Applying to Waterloo Engineering

Tips for Applying to Waterloo Engineering

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]