Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Utilizing Machine Learning for Scale Bridging: From Atomistic to the Coarse Grained Level and Back

Автор: CaSToRC Official

Загружено: 2022-01-27

Просмотров: 649

Описание:

Multiscale simulations which combine atomistic and coarse-grained (CG) simulation models can overcome size and time scale limitations of purely atomistic approaches while retaining chemical/biological specificity. In this context, linking the simulation scales and assessing and improving the inevitable shortcomings of the lower resolution models remains an ongoing effort in which machine learning (ML) plays an increasingly important role.

Generally, in bottom-up coarse-graining, CG interactions are devised such that an accurate representation of a higher-resolution (e.g. atomistic) sampling of configurational phase space is achieved. Recently, traditional bottom-up methods have been complemented by machine learning (ML) approaches. ML methods can be used to derive or validate CG models by matching the sampling of a (relatively complex) free-energy surface as opposed to low-dimensional target functions/properties. For example, high-dimensional free energy surfaces can be extracted from atomistic simulations with the help of artificial neural networks (NN) - which can then be employed for simulations on a CG level of resolution. Secondly, ML methods can also be used to obtain low-dimensional representations of the sampling of phase space or to identify suitable collective variables that describe the states and the dynamics of a system.

This information can then be directly fed into the CG potentials or be used to identify optimal CG representations and learn CG interactions. Moreover, the so-obtained low dimensional representations enable us to assess the consistency of the sampling in models at different levels of resolution, to go back and forth between the scales and ultimately to enhance and improve the sampling of the systems.

This talk was given by Professor Christine Peter who studied Chemistry and Mathematics at the University of Freiburg, Germany. In 2003 she obtained her PhD at the ETH Zurich, subsequently she worked at the National Institutes of Health (Bethesda, MD) and the Max Planck Institute for Polymer Research (Mainz, Germany) as a postdoctoral researcher and as an Emmy Noether research group leader.

Since 2013 she is a full professor for Theoretical Chemistry at the University of Konstanz, Germany. The research focus of the group lies in multiscale simulation models and scale-bridging approaches and the development of analysis methods for simulation data. Areas of interest range from peptide folding and aggregation, protein-protein interactions, to biopolymer/mineral interfaces.

Utilizing Machine Learning for Scale Bridging: From Atomistic to the Coarse Grained Level and Back

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Multiscale Simulations of Polymers at Interfaces by Prof. Paola Carbone

Multiscale Simulations of Polymers at Interfaces by Prof. Paola Carbone

e-seminar #17: Machine Learning Coarse-Grained Models with Graph Neural Networks

e-seminar #17: Machine Learning Coarse-Grained Models with Graph Neural Networks

Justin Smith - The state of neural network interatomic potentials - IPAM at UCLA

Justin Smith - The state of neural network interatomic potentials - IPAM at UCLA

Navigating protein landscapes with a machine-learned transferable coarse-grained model

Navigating protein landscapes with a machine-learned transferable coarse-grained model

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Czy Putin chce pokoju? Kulisy decyzji na Kremlu | prof. Hieronim Grala | ŻEBY WIEDZIEĆ #9

Czy Putin chce pokoju? Kulisy decyzji na Kremlu | prof. Hieronim Grala | ŻEBY WIEDZIEĆ #9

Chemically Transferable Generative Backmapping of Coarse-Grained Proteins | Soojung Yang

Chemically Transferable Generative Backmapping of Coarse-Grained Proteins | Soojung Yang

Cecelia Clementi - Coarse-graining classical and quantum systems - IPAM at UCLA

Cecelia Clementi - Coarse-graining classical and quantum systems - IPAM at UCLA

Wojna w 2026? Podsumowanie roku na froncie. Rosja wygrywa? — płk Piotr Lewandowski i Zychowicz

Wojna w 2026? Podsumowanie roku na froncie. Rosja wygrywa? — płk Piotr Lewandowski i Zychowicz

Multiscale Modeling of Biomolecules and Materials

Multiscale Modeling of Biomolecules and Materials

LLM Applications Actross Domains: Use cases from the Mediterranian NCCs

LLM Applications Actross Domains: Use cases from the Mediterranian NCCs

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Exploring Materials Properties with HPC: Hands-On DFT and Quantum Espresso

Exploring Materials Properties with HPC: Hands-On DFT and Quantum Espresso

IAS Distinguished Lecture: Prof Gregory A. Voth (Jan 18, 2017)

IAS Distinguished Lecture: Prof Gregory A. Voth (Jan 18, 2017)

A Practical Guide to LLM Deployment and RAG Systems

A Practical Guide to LLM Deployment and RAG Systems

Simulate Time-integrated Coarse-grained Molecular Dynamics with Geometric Machine Learning

Simulate Time-integrated Coarse-grained Molecular Dynamics with Geometric Machine Learning

Deep Learning Applications by Rina Panigrahy

Deep Learning Applications by Rina Panigrahy

Coarse-grained and multiscale modeling of proteins [review paper presentation]

Coarse-grained and multiscale modeling of proteins [review paper presentation]

Aurora: A Foundation Model of the Atmosphere

Aurora: A Foundation Model of the Atmosphere

Как работает 3D-принтер?

Как работает 3D-принтер?

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]