Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

The Addition Rule of Probability | Probability Theory, Sum Rule of Probability

Автор: Wrath of Math

Загружено: 2019-09-09

Просмотров: 44862

Описание:

What is the addition rule of probabiltiy? Also sometimes called the sum rule of probability, this rule tells us how to calculate the probability of the union of two events. In today’s math video lesson, we’ll explain the addition rule of probabiltiy for two events that are mutually exclsuive and for the general case when we don’t know if the events are mutually exclusive! We’ll also go over two examples of addition rule problems. It’s called the addition rule because, of course, it involved adding probabilties!

If A and B are two mutually exclusive events, then P(A U B) = P(A) + P(B). This is the addition rule for mutually exclusive events!

But what if we don’t know if two events are mutually exclusive? Or what if we know they are certainly not mutually exclusive? Then we can use this formula instead: P(A U B) = P(A) + P(B) - P(A intersect B). This comes from the fact that counting P(A) also includes P(A intersect B) by definition. However, when we add P(B), we are counting P(A intersect B) a second time, so we need to subtract P(A intersect B) in order to correct that double counting of the intersection! When two events are mutually exclusive, the probability of their intersection is 0, so we’d just be left with the original formula for the probability of the union of two mutually exclusive events.

Remember that mutually exclusive events are events that cannot occur simultaneously!

SOLUTION TO PRACTICE PROBLEM:

We are asked to find the probability of a randomly drawn card from a standard 52-card deck being red or an ace. We are considering two events.

A: The card is red
B: The card is an ace

A and B are not mutually exclusive because a card can be red and an ace (ace of hearts or ace of diamonds). We know, by the addition rule, P(A U B) = P(A) + P(B) - P(A intersect B). What is P(A)? There are 26 red cards and 52 cards total, so P(A) = 26/52. What is P(B)? There are four aces so P(B) = 4/52. What is P(A intersect B)? There are two red aces, so P(A intersect B) = 2/52. Thus, P(A U B) = 26/52 + 4/52 - 2/52 = 28/52. 

If you are preparing for Probability Theory or in the midst of learning Probability Theory, you might be interested in the textbook I used in my Probability Theory course, called "A First Course in Probability Theory" by Sheldon Ross. Check out the book and see if it suits your needs! You can purchase the textbook using the affiliate link below which costs you nothing extra and helps support Wrath of Math!

PURCHASE THE BOOK: https://amzn.to/31mXEjr


I hope you find this video helpful, and be sure to ask any questions down in the comments!

+WRATH OF MATH+

◆ Support Wrath of Math on Patreon:   / wrathofmathlessons  

Follow Wrath of Math on...
● Instagram:   / wrathofmathedu  
● Facebook:   / wrathofmath  
● Twitter:   / wrathofmathedu  

My Music Channel:    / seanemusic  

The Addition Rule of Probability | Probability Theory, Sum Rule of Probability

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Multiplication Rule of Probability | Probability Theory, Intersection of Two Events

Multiplication Rule of Probability | Probability Theory, Intersection of Two Events

The Law of Total Probability | Probability Theory, Total Probability Rule

The Law of Total Probability | Probability Theory, Total Probability Rule

✓ Новая формула площади прямоугольного треугольника | Ботай со мной #159 | Борис Трушин

✓ Новая формула площади прямоугольного треугольника | Ботай со мной #159 | Борис Трушин

Правило сложения вероятностей — объяснение

Правило сложения вероятностей — объяснение

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Румынская математическая олимпиада

Румынская математическая олимпиада

Introduction to Probability, Events, & Statistics - [3]

Introduction to Probability, Events, & Statistics - [3]

Sum Rule, Product Rule, Joint & Marginal Probability  - CLEARLY EXPLAINED with EXAMPLES!

Sum Rule, Product Rule, Joint & Marginal Probability - CLEARLY EXPLAINED with EXAMPLES!

Преобразование Фурье: лучшее объяснение (для начинающих)

Преобразование Фурье: лучшее объяснение (для начинающих)

Addition rule for probability | Probability and Statistics | Khan Academy

Addition rule for probability | Probability and Statistics | Khan Academy

Intro to Bayes’s Theorem | Probability Theory

Intro to Bayes’s Theorem | Probability Theory

Объяснены все доказательства того, что существует бесконечно много простых чисел

Объяснены все доказательства того, что существует бесконечно много простых чисел

Intro to Conditional Probability | Probability Theory

Intro to Conditional Probability | Probability Theory

Почему

Почему "вероятность 0" не означает "невозможно"

Addition Rule for Probability Example

Addition Rule for Probability Example

Вероятность, выборочные пространства и правило дополнения (6.1)

Вероятность, выборочные пространства и правило дополнения (6.1)

Что такое пароль? Новый, более безопасный способ входа без паролей

Что такое пароль? Новый, более безопасный способ входа без паролей

Math Antics - Basic Probability

Math Antics - Basic Probability

Самая Сложная Задача В Истории Самой Сложной Олимпиады

Самая Сложная Задача В Истории Самой Сложной Олимпиады

Probabilities involving Equally Likely Outcomes | Probability Theory

Probabilities involving Equally Likely Outcomes | Probability Theory

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]