Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

How to Retrieve Specific Key/Value Pairs from HDFS via HTTP or JAVA API

Автор: vlogize

Загружено: 2025-04-11

Просмотров: 1

Описание:

Explore effective methods to extract specific key/value pairs from HDFS using HTTP and JAVA API, ensuring efficiency in data retrieval without compromising performance.
---
This video is based on the question https://stackoverflow.com/q/73409578/ asked by the user 'nhkb_55' ( https://stackoverflow.com/u/19797291/ ) and on the answer https://stackoverflow.com/a/73417251/ provided by the user 'OneCricketeer' ( https://stackoverflow.com/u/2308683/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to get specific key/value from HDFS via HTTP or JAVA API?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Retrieve Specific Key/Value Pairs from HDFS via HTTP or JAVA API

Hadoop's HDFS (Hadoop Distributed File System) is a widely used storage system ideal for large data sets. However, due to its design as a block storage system rather than a specialized Key/Value store, retrieving specific keys and their corresponding values can be challenging. Let's address how to effectively get specific key/value pairs, such as retrieving the values for 'phone' and 'toys' from a larger data file.

The Challenge of HDFS

The first thing to understand is that HDFS is not designed for direct key/value retrieval. Instead, it's optimized for processing large files rather than quickly accessing small pieces of information. In a typical scenario, a file in HDFS may contain numerous key/value pairs, like this:

[[See Video to Reveal this Text or Code Snippet]]

Retrieving specific values from such a file can become cumbersome, particularly if the file size reaches gigabytes. The conventional HTTP and Java API approaches are not optimized for these small, individualized data requests.

Possible Approaches

Here are some strategies you can use to retrieve specific key/value pairs effectively:

1. Use Data Warehousing Tools

If you frequently need to perform queries on your data, consider using data warehousing tools such as:

HBase: A NoSQL database that allows easy and efficient retrieval of key/value pairs.

Apache Accumulo: Similar to HBase, it provides strong consistency and secure access.

Hive: A data warehouse infrastructure that provides data summarization, query, and analysis.

Using these systems allows you to perform complex queries without needing to load bulky data files in a straightforward manner.

2. HDFS with MapReduce or Spark

If you’re still relying on HDFS and cannot switch to a structured database, here are other options:

MapReduce: This framework can help process the data in batches. You set up a job that reads the key/value pairs and filters out the items you're interested in. Although it processes the entire file, it enables distributed computing.

Apache Spark: Similar to MapReduce but designed for high-speed processing, Spark can read the HDFS file as a two-column CSV and perform operations to pull only your desired key/value pairs.

Both methods may require iteration through all the lines, but they can be optimized for better performance thanks to distributed processing.

3. Traditional Database Systems

If feasible, it might be beneficial to transfer your data to a traditional database system. These databases are designed for quick queries and indexing, allowing you to retrieve specific key/value pairs without processing entire data files. This approach ensures speed and efficiency when accessing specific records.

Conclusion

In summary, while HDFS does not lend itself easily to specific key/value retrieval via HTTP or JAVA API, there are several strategies available to accomplish your goals. Whether using another system designed for queries like HBase or employing distributed computing techniques via MapReduce or Spark, selecting the right approach will depend on your specific requirements and your infrastructure capabilities.

For frequent lookups, consider moving data to a relational database or NoSQL database, as this will significantly improve both performance and resource utilization. By understanding these methods, you can enhance your data processing efficiency when working with large datasets on HDFS.

How to Retrieve Specific Key/Value Pairs from HDFS via HTTP or JAVA API

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#4497 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "qY4MfWv01pI" ["related_video_title"]=> string(53) "How Distributed Lock works | ft Redis | System Design" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(8) "ByteMonk" } [1]=> object(stdClass)#4470 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "lvM8DpYhFbo" ["related_video_title"]=> string(184) "Музыка лечит сердце и сосуды🌸 Успокаивающая музыка восстанавливает нервную систему,расслабляющая" ["posted_time"]=> string(0) "" ["channelName"]=> string(15) "Yellow Melodies" } [2]=> object(stdClass)#4495 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "p_q-n09B8KA" ["related_video_title"]=> string(103) "14: Distributed Logging & Metrics Framework | Systems Design Interview Questions With Ex-Google SWE" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(18) "Jordan has no life" } [3]=> object(stdClass)#4502 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "xDpvyu0w0C8" ["related_video_title"]=> string(83) "Hadoop vs Spark | Which One to Choose? | Hadoop Training | Spark Training | Edureka" ["posted_time"]=> string(19) "7 лет назад" ["channelName"]=> string(8) "edureka!" } [4]=> object(stdClass)#4481 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "GB6wLooVFEI" ["related_video_title"]=> string(101) "Deep Focus Radio - Музыка для кодирования и производительности" ["posted_time"]=> string(0) "" ["channelName"]=> string(15) "Chill Music Lab" } [5]=> object(stdClass)#4499 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "qKlUpmZwsyw" ["related_video_title"]=> string(53) "Feeling Good Mix - Emma Péters, Carla Morrison" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> string(13) "Nonstop Music" } [6]=> object(stdClass)#4494 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "Y6Ev8GIlbxc" ["related_video_title"]=> string(49) "Distributed Systems in One Lesson by Tim Berglund" ["posted_time"]=> string(19) "7 лет назад" ["channelName"]=> string(13) "Devoxx Poland" } [7]=> object(stdClass)#4504 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "DCmFzQk3JFc" ["related_video_title"]=> string(32) "Nutritive value of eggs and meat" ["posted_time"]=> string(22) "11 дней назад" ["channelName"]=> string(29) "The Virtual Zoology Classroom" } [8]=> object(stdClass)#4480 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "22tkx79icy4" ["related_video_title"]=> string(55) "RAG | САМОЕ ПОНЯТНОЕ ОБЪЯСНЕНИЕ!" ["posted_time"]=> string(23) "1 месяц назад" ["channelName"]=> string(8) "AI RANEZ" } [9]=> object(stdClass)#4498 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "VfcRxtBKI54" ["related_video_title"]=> string(102) "Types of Databases: Relational vs. Columnar vs. Document vs. Graph vs. Vector vs. Key-value & more" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(11) "Anton Putra" } }
How Distributed Lock works | ft Redis | System Design

How Distributed Lock works | ft Redis | System Design

Музыка лечит сердце и сосуды🌸 Успокаивающая музыка восстанавливает нервную систему,расслабляющая

Музыка лечит сердце и сосуды🌸 Успокаивающая музыка восстанавливает нервную систему,расслабляющая

14: Distributed Logging & Metrics Framework | Systems Design Interview Questions With Ex-Google SWE

14: Distributed Logging & Metrics Framework | Systems Design Interview Questions With Ex-Google SWE

Hadoop vs Spark | Which One to Choose? | Hadoop Training | Spark Training | Edureka

Hadoop vs Spark | Which One to Choose? | Hadoop Training | Spark Training | Edureka

Deep Focus Radio - Музыка для кодирования и производительности

Deep Focus Radio - Музыка для кодирования и производительности

Feeling Good Mix - Emma Péters, Carla Morrison

Feeling Good Mix - Emma Péters, Carla Morrison

Distributed Systems in One Lesson by Tim Berglund

Distributed Systems in One Lesson by Tim Berglund

Nutritive value of eggs and meat

Nutritive value of eggs and meat

RAG | САМОЕ ПОНЯТНОЕ ОБЪЯСНЕНИЕ!

RAG | САМОЕ ПОНЯТНОЕ ОБЪЯСНЕНИЕ!

Types of Databases: Relational vs. Columnar vs. Document vs. Graph vs. Vector vs. Key-value & more

Types of Databases: Relational vs. Columnar vs. Document vs. Graph vs. Vector vs. Key-value & more

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]