Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

How Coinbase Uses Ray, vLLM & LiteLLM to Power Secure LLM Services | Ray Summit 2025

Автор: Anyscale

Загружено: 2025-12-08

Просмотров: 559

Описание:

At Ray Summit 2025, Wenyue Liu and Akshit Trehan from Coinbase share how the Coinbase Machine Learning Platform (MLP) team built trusted, production-grade LLM services using Ray, vLLM, and LiteLLM—supporting one of the world’s most security-sensitive environments and reinforcing Coinbase’s mission to remain the most trusted crypto exchange.

They begin by outlining the unique challenges of building LLM infrastructure inside a financial institution, where trust, security, and reliability are non-negotiable. To meet these requirements, Coinbase engineered an LLM serving stack that seamlessly integrates:

Ray for distributed orchestration and scaling

vLLM for high-throughput, low-latency inference

LiteLLM for routing, abstraction, and multi-provider reliability

The speakers then take a deep dive into the technical architecture behind Coinbase’s internal LLM services, including:

User authentication and authorization patterns tailored for secure LLM access

Service-to-service (s2s) trust models that allow safe and auditable communication between internal systems

LiteLLM distribution strategies to balance throughput, reliability, and fallback behavior

How vLLM and Ray work together to power scalable, production-grade LLM serving APIs

Systems built to support high-volume internal LLM traffic, ensuring consistent performance under load

The session walks through the full end-to-end story of how Coinbase uses Ray and vLLM to deliver trustworthy, secure, and efficient LLM services—meeting the strict reliability requirements of a top global crypto exchange.

Liked this video? Check out other Ray Summit breakout session recordings    • Ray Summit 2025 - Breakout Sessions  

Subscribe to our YouTube channel to stay up-to-date on the future of AI!    / anyscale  

🔗 Connect with us:
LinkedIn:   / joinanyscale  

How Coinbase Uses Ray, vLLM & LiteLLM to Power Secure LLM Services | Ray Summit 2025

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Scaling Production LLM Inference Using EKS Auto Mode & Ray Serve | Ray Summit 2025

Scaling Production LLM Inference Using EKS Auto Mode & Ray Serve | Ray Summit 2025

Prompt Learning: A Reinforcement Learning-Inspired Approach to AI Optimization | Ray Summit 2025

Prompt Learning: A Reinforcement Learning-Inspired Approach to AI Optimization | Ray Summit 2025

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Scaling AI the Snowflake Way: ML Workloads on Ray | Ray Summit 2025

Scaling AI the Snowflake Way: ML Workloads on Ray | Ray Summit 2025

Не создавайте агентов, а развивайте навыки – Барри Чжан и Махеш Мураг, Anthropic

Не создавайте агентов, а развивайте навыки – Барри Чжан и Махеш Мураг, Anthropic

Elon Musk: A Different Conversation w/ Nikhil Kamath | Full Episode | People by WTF Ep. 16

Elon Musk: A Different Conversation w/ Nikhil Kamath | Full Episode | People by WTF Ep. 16

Distributed Embeddings at Scale: Processing 10M+ Rows/ Day with Ray, GPUs & Qdrant | Ray Summit 2025

Distributed Embeddings at Scale: Processing 10M+ Rows/ Day with Ray, GPUs & Qdrant | Ray Summit 2025

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

Boosting vLLM Inference on Huawei NPU with Ray Compiled Graphs — Huawei | Ray Summit 2025

Boosting vLLM Inference on Huawei NPU with Ray Compiled Graphs — Huawei | Ray Summit 2025

Sting - Shape of My Heart || Sylwester z Dwójką 2025

Sting - Shape of My Heart || Sylwester z Dwójką 2025

Inside Google DeepMind: AGI, Robotics, & World Models Explained - Demis Hassabis

Inside Google DeepMind: AGI, Robotics, & World Models Explained - Demis Hassabis

LiquidAI’s Approach to Large-Scale Synthetic Data Generation Using Ray | Ray Summit 2025

LiquidAI’s Approach to Large-Scale Synthetic Data Generation Using Ray | Ray Summit 2025

То, что они только что построили, — нереально

То, что они только что построили, — нереально

NVIDIA CEO Jensen Huang's Vision for the Future

NVIDIA CEO Jensen Huang's Vision for the Future

How DataRobot Parallelizes Agentic Pipeline Searches with Ray + syftr | Ray Summit 2025

How DataRobot Parallelizes Agentic Pipeline Searches with Ray + syftr | Ray Summit 2025

How Runhouse Orchestrates Multi-Cluster Ray Workloads | Ray Summit 2025

How Runhouse Orchestrates Multi-Cluster Ray Workloads | Ray Summit 2025

Running Ray in Production: Google’s Guide to Operators & Observability | Ray Summit 2025

Running Ray in Production: Google’s Guide to Operators & Observability | Ray Summit 2025

Почему спагетти-код лучше чистой архитектуры

Почему спагетти-код лучше чистой архитектуры

How DigitalOcean Builds Next-Gen Inference with Ray, vLLM & More | Ray Summit 2025

How DigitalOcean Builds Next-Gen Inference with Ray, vLLM & More | Ray Summit 2025

How Nvidia GPUs Compare To Google’s And Amazon’s AI Chips

How Nvidia GPUs Compare To Google’s And Amazon’s AI Chips

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]