Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Speed of Apache Pinot at the Cost of Cloud Object Storage in StarTree Cloud (StarTree) | Current 24

Автор: Confluent Developer

Загружено: 2024-10-28

Просмотров: 189

Описание:

More: https://current.confluent.io | For real-time analytics, you need systems that can provide ultra low latency (ms) and extremely high throughput (1000s of qps). One such system is Apache Pinot, which is excellent for real-time analytics use cases like user-facing analytics and personalization.

The users of Pinot love the speed of Pinot and want to use Pinot for all their use cases - internal analytics, ad hoc analytics, reporting. For such use cases, you typically need to store really long retention data.

You can of course do that today, but it can get expensive to store large amounts of data in a system like Pinot, because of tightly coupled storage & compute. As the total data volume grows, more resources (compute + storage) need to be provisioned, whether or not the corresponding compute resources are utilized, resulting in a high cost to serve.

One option for users is to introduce decoupled systems for historical data analytics. Such systems use cloud object storage, which reduces the cost. But that will take your latencies to the 10s of seconds range and also introduce the overhead of maintaining and operating a new system and federating queries.

To address these challenges, we added Tiered Storage for Apache Pinot in StarTree Cloud, which gives you speed of Apache Pinot, at the cost of cloud storage! In this talk, we will dive deep into how we built an abstraction in Apache Pinot to make it agnostic of where the data is located. We'll talk about how we're able to query data on the cloud directly (not downloading the entire data like lazy-loading) with sub-seconds latencies in StarTree Cloud. We'll talk about the various ways you can configure and customize which portion of your data resides locally as tightly-coupled and which moves to the cloud, giving the best of both worlds.

LEARN MORE
► Confluent Developer: https://developer.confluent.io

CONNECT
Subscribe on YouTube:    / @confluentdeveloper  
Community Slack: confluentcommunity.slack.com
X: https://x.com/confluentinc
Linkedin:   / confluent  
GitHub: https://github.com/confluentinc
Site: https://developer.confluent.io

ABOUT CONFLUENT DEVELOPER
Confluent Developer provides comprehensive resources for developers looking to learn about Apache Kafka®, Apache Flink®, Confluent Cloud, Confluent Platform, and any other technology related to the broader Data Streaming Platform. Content on Confluent Developer includes courses, getting started guides, topical deep-dives, patterns, tutorials, and listings of community events. Learn more at https://developer.confluent.io.

#apachekafka #apacheflink #confluent

Speed of Apache Pinot at the Cost of Cloud Object Storage in StarTree Cloud (StarTree) | Current 24

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Apache Flink: что это такое и как работает.

Apache Flink: что это такое и как работает.

Очереди для объяснения Кафки (KIP-932)

Очереди для объяснения Кафки (KIP-932)

What if AI Doesn't Need Structure, It Needs Connection?

What if AI Doesn't Need Structure, It Needs Connection?

Avro vs Parquet - comparison of row and column oriented file formats

Avro vs Parquet - comparison of row and column oriented file formats

Stanford Webinar - Agentic AI: A Progression of Language Model Usage

Stanford Webinar - Agentic AI: A Progression of Language Model Usage

The Availa-blitz: Kafka's Scaling Saga for High-Speed Trading (Charles Schwab) | Current 24

The Availa-blitz: Kafka's Scaling Saga for High-Speed Trading (Charles Schwab) | Current 24

Apache Iceberg, un nouveau standard ?

Apache Iceberg, un nouveau standard ?

Streaming Frontiers - S01E08 - How to Query a Stream - Real-time OLAP - Analytics That Never Sleep

Streaming Frontiers - S01E08 - How to Query a Stream - Real-time OLAP - Analytics That Never Sleep

Context Engineering with Hybrid Search, AI Features in Apache Doris 4.0

Context Engineering with Hybrid Search, AI Features in Apache Doris 4.0

Превращаем паркет в Apache Pinot с участием Нехи Павар | Выпуск 5 | Подкаст Confluent Developer

Превращаем паркет в Apache Pinot с участием Нехи Павар | Выпуск 5 | Подкаст Confluent Developer

How to stream data from MySQL to Apache Kafka® | Kafka Tutorial

How to stream data from MySQL to Apache Kafka® | Kafka Tutorial

Streaming Frontiers - S01E09 - Mission Debrief: Building the Current 2025 Developer Keynote Demo

Streaming Frontiers - S01E09 - Mission Debrief: Building the Current 2025 Developer Keynote Demo

Introduction to Apache Fluss

Introduction to Apache Fluss

DuckDB кардинально изменила правила игры, сравнив DuckLake и Apache Iceberg.

DuckDB кардинально изменила правила игры, сравнив DuckLake и Apache Iceberg.

Streamlining Entry Into Streaming Analytics w JupyterHub & Flink (E. Dadashov, Apple) Current 24

Streamlining Entry Into Streaming Analytics w JupyterHub & Flink (E. Dadashov, Apple) Current 24

Масштабирование ИИ в инженерии с Питером Беллом | Выпуск 7 | Подкаст Confluent Developer

Масштабирование ИИ в инженерии с Питером Беллом | Выпуск 7 | Подкаст Confluent Developer

Streaming Frontiers - S01E010 - Captain's Log: Stardate 2025

Streaming Frontiers - S01E010 - Captain's Log: Stardate 2025

HL7 Tutorial For Beginner | HL7 Online Training Videos

HL7 Tutorial For Beginner | HL7 Online Training Videos

Stanford XCS224U: NLU I In-context Learning, Part 2: Core Concepts I Spring 2023

Stanford XCS224U: NLU I In-context Learning, Part 2: Core Concepts I Spring 2023

Using small LLMs + Kafka for agentic system

Using small LLMs + Kafka for agentic system

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com