Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Fixing Special Characters When Exporting Pandas DataFrame to CSV

Автор: vlogize

Загружено: 2025-05-26

Просмотров: 1

Описание:

Learn how to fix the issue of special characters when writing a Pandas DataFrame to CSV using Python. Simple solutions and explanations included!
---
This video is based on the question https://stackoverflow.com/q/76895981/ asked by the user 'nilsinelabore' ( https://stackoverflow.com/u/11901732/ ) and on the answer https://stackoverflow.com/a/76896126/ provided by the user 'Darrius Chen' ( https://stackoverflow.com/u/22362688/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: to_csv returns special characters when writing pandas dataframe into csv

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Fixing Special Characters When Exporting Pandas DataFrame to CSV: A Complete Guide

When working with data in Python and Pandas, exporting a DataFrame to a CSV file is a common task. However, many users encounter unexpected formatting issues, particularly with special characters. For instance, one common scenario involves special characters from input data being altered during the export process, resulting in misrepresented text like "Department - Reconciliation" turning into "Department – Reconciliation".

This guide will explain why this occurs and guide you through a straightforward solution to fix this problem.

The Problem Explained

When writing a Pandas DataFrame to a CSV file, you may notice that certain characters appear differently than expected. Here’s the key issue:

Example of Special Character Issue: Reading from an Excel file shows "Department - Reconciliation", but when exported to CSV, it displays as "Department – Reconciliation". Upon re-importing the CSV in Python, the original text appears correctly.

This issue often arises due to how different encoding standards interact with each other, particularly when dealing with files that may include a Byte Order Mark (BOM).

Why Does This Happen?

The special character problem primarily stems from the encoding used when exporting the DataFrame to CSV. In this context, there are a few key points to consider:

Encoding Basics

UTF-8: This encoding doesn't use a BOM and assumes a consistent byte order across systems. However, if your data includes a BOM and you read it as UTF-8, the BOM may be treated as part of the content, leading to formatting errors.

UTF-8-SIG: This is essentially UTF-8 but includes the BOM. It processes the BOM correctly if present, isolating it from textual content. As a result, using this encoding helps avoid the issue where special characters are misrepresented.

The Role of Excel Data

When exporting data that originated from Excel, there’s often an implicit assumption that the data will maintain its format. However, differences in encoding can lead to unexpected formatting changes during export.

The Solution

To fix the special character issue when exporting your DataFrame to a CSV file, you can make a simple change in your code. Here’s how:

Step-by-Step Guide

Use utf-8-sig Encoding

Change your to_csv method to specify utf-8-sig as the encoding. For example:

[[See Video to Reveal this Text or Code Snippet]]

Why It Works:

Using utf-8-sig allows Python to correctly handle files that start with a BOM, ensuring that special characters are preserved during the export process.

Alternative Solutions:

Ensure your DataFrame only contains string data. You can convert columns to string if necessary, but this may not be required for fixing encoding issues. Use:

[[See Video to Reveal this Text or Code Snippet]]

Example Code Implementation

Here’s a complete example of how to export your DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Exporting a Pandas DataFrame to a CSV file can sometimes lead to problems with special characters, particularly when dealing with data sourced from Excel. By using utf-8-sig as your encoding option, you can prevent these issues and ensure that your data retains its intended formatting.

Now you can confidently export your DataFrames without encountering frustrating character issues. Happy coding!

Fixing Special Characters When Exporting Pandas DataFrame to CSV

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#4336 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "RYbITgaJYX0" ["related_video_title"]=> string(50) "Python for Data Analysis: Reading and Writing Data" ["posted_time"]=> string(21) "4 года назад" ["channelName"]=> string(8) "DataDaft" } [1]=> object(stdClass)#4309 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "HU0re8UJViM" ["related_video_title"]=> string(66) "Clean Excel Data With Python Pandas - Removing Unwanted Characters" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> string(16) "Derrick Sherrill" } [2]=> object(stdClass)#4334 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "LPZh9BOjkQs" ["related_video_title"]=> string(82) "Краткое объяснение больших языковых моделей" ["posted_time"]=> string(27) "7 месяцев назад" ["channelName"]=> string(11) "3Blue1Brown" } [3]=> object(stdClass)#4341 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "iyrnPNBWIQ4" ["related_video_title"]=> string(161) "«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata" ["posted_time"]=> string(21) "1 день назад" ["channelName"]=> string(28) "Это Осетинская!" } [4]=> object(stdClass)#4320 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "NlGWT-YibfY" ["related_video_title"]=> string(84) "Силовой захват власти / Новая спецоперация РФ?" ["posted_time"]=> string(24) "10 часов назад" ["channelName"]=> string(10) "NEXTA Live" } [5]=> object(stdClass)#4338 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "Tae0BwhenRQ" ["related_video_title"]=> string(80) "Как запоминать ВСЕ с помощью Obsidian.md и Zettelkasten" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(14) "ZProger [ IT ]" } [6]=> object(stdClass)#4333 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "nBCIPkCF7hI" ["related_video_title"]=> string(67) "Паттерн, который должен знать каждый" ["posted_time"]=> string(25) "2 недели назад" ["channelName"]=> string(29) "Полевой Дмитрий" } [7]=> object(stdClass)#4343 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "22tkx79icy4" ["related_video_title"]=> string(55) "RAG | САМОЕ ПОНЯТНОЕ ОБЪЯСНЕНИЕ!" ["posted_time"]=> string(23) "1 месяц назад" ["channelName"]=> string(8) "AI RANEZ" } [8]=> object(stdClass)#4319 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "IVI6kAR89Nw" ["related_video_title"]=> string(74) "This NEW AI Agent Lets You Automate Anything In Seconds 🤯 (easy to use)" ["posted_time"]=> string(24) "15 часов назад" ["channelName"]=> string(14) "Rob The AI Guy" } [9]=> object(stdClass)#4337 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "ztrdSWvpRKM" ["related_video_title"]=> string(59) "ПЕРВЫЙ капсульный поезд: 5000 руб.!" ["posted_time"]=> string(21) "1 день назад" ["channelName"]=> string(3) "808" } }
Python for Data Analysis: Reading and Writing Data

Python for Data Analysis: Reading and Writing Data

Clean Excel Data With Python Pandas - Removing Unwanted Characters

Clean Excel Data With Python Pandas - Removing Unwanted Characters

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata

«Жить надо сегодня». Олег Тиньков и Майкл Калви о взлете нового финтех-стартапа Plata

Силовой захват власти / Новая спецоперация РФ?

Силовой захват власти / Новая спецоперация РФ?

Как запоминать ВСЕ с помощью Obsidian.md и Zettelkasten

Как запоминать ВСЕ с помощью Obsidian.md и Zettelkasten

Паттерн, который должен знать каждый

Паттерн, который должен знать каждый

RAG | САМОЕ ПОНЯТНОЕ ОБЪЯСНЕНИЕ!

RAG | САМОЕ ПОНЯТНОЕ ОБЪЯСНЕНИЕ!

This NEW AI Agent Lets You Automate Anything In Seconds 🤯 (easy to use)

This NEW AI Agent Lets You Automate Anything In Seconds 🤯 (easy to use)

ПЕРВЫЙ капсульный поезд: 5000 руб.!

ПЕРВЫЙ капсульный поезд: 5000 руб.!

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]