Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Declarative MLOps - Streamlining Model Serving on Kubernetes // Rahul Parundekar// MLOps Meetup

Автор: MLOps.community

Загружено: 2023-04-21

Просмотров: 2500

Описание:

MLOps Community Meetup #123! Last Wednesday, we talked to Rahul Parundekar, Founder of A.I. Hero, Inc.

//Abstract
Data Scientists prefer Jupyter Notebooks to experiment and train ML models. Serving these models in production can benefit from a more streamlined approach that can guarantee a repeatable, scalable, and high velocity. Kubernetes provides such an environment. And while third-party solutions for serving models make it easier, this talk demystifies how native K8s operators can be used to deploy models along with best practices for containerizing your own model, and CI/CD using GitOps.

// Bio
Rahul has 13+ years of experience building AI solutions and leading teams. He is passionate about building Artificial Intelligence (A.I.) solutions for improving the Human Experience. He is currently the founder of A.I. Hero - a platform to help you fix and enrich your data with ML. At AI Hero, he has also been a big proponent of declarative MLOps - using Kubernetes to operationalize the training and serving lifecycle of ML models and has published several tutorials on his Medium blog.

Before AI Hero, he was the Director of Data Science (ML Engineering) at Figure-Eight (acquired by Appen), a data annotation company, where he built out a data pipeline and ML model serving architecture serving 36 models (NLP, Computer Vision, Audio, etc.) and traffic of up to 1M predictions per day.

// Jobs board
https://mlops.pallet.xyz/jobs

// Related links
Website: https://aihero.studio
The Declarative MLOps Series:
  / streamlining-machine-learning-operations-w...  
  / containerizing-and-serving-an-ml-model-wit...  
  / continuous-integration-for-serving-ml-mode...  
  / continuous-delivery-of-ml-models-on-kubern...  

---------- ✌️Connect With Us ✌️------------
Join our Slack community: https://go.mlops.community/slack
Follow us on Twitter: @mlopscommunity
Sign up for the next meetup: https://go.mlops.community/register
Catch all episodes, Feature Store, Machine Learning Monitoring, and Blogs: https://mlops.community/

Connect with Demetrios on LinkedIn:   / dpbrinkm  
Connect with Rahul on LinkedIn:   / rparundekar  

Timestamps:
[00:00] Musical introduction to Rahul Parundekar
[04:15] LLMs in Production Conference announcement
[04:36] Purchase our Swag shirt!
[06:45] Declarative Paradigm
[08:40] Why now?
[09:31] It's great for scalability
[10:01] Most MLOps tools work well with K8s
[11:00] Easy-deploys with tool-provided CRDs
[11:57] Caveats
[13:46] This talk
[14:09] 3 Ways to Serve ML Models
[14:14] Way 1: Serving a Model with an HTTP Endpoint
[15:08] Way 2: Serving the Model with a Message Queue
[15:43] Way 3: Long-running Task that Performs Batch Processing
[18:17] Buil your own container
[20:00] The main predictor (1/2): Singleton with load method
[20:23] The main predictor (2/2): Predict
[20:47] Way 1 5 steps
[23:54] Way 2 2 steps
[25:03] Way 3 2 steps
[26:00] Tests: Sanity check for the model
[26:53] Bringing it together: Entrypoint
[31:49] Continuous Integration (CI)
[34:35] Create docker-compose.yaml to make it easier for CI
[36:00] On PR: Run tests with Github Actions
[36:38] Branch-protection
[37:51] On PR: Github Actions automatically runs our test
[38:10] On PR: PRs can be then merged on approval
[38:28] Container Repository
[39:15] Continuous Integration (CI)
[39:26] On merge to main
[40:45] Actions that can constraint
[42:38] TODO
[43:17] Continuous Delivery
[45:42] Argo CD
[46:39] Image promotion with Kustomize
[00:00]
[00:00]
[00:00]
[00:00]
[00:00]
[00:00]
[00:00]
[00:00]
[00:00]
[00:00]

Declarative MLOps - Streamlining Model Serving on Kubernetes // Rahul Parundekar// MLOps Meetup

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Проектирование систем для рекомендаций и поиска // Евгений Ян // Встреча MLOps №78

Проектирование систем для рекомендаций и поиска // Евгений Ян // Встреча MLOps №78

Kubernetes — Простым Языком на Понятном Примере

Kubernetes — Простым Языком на Понятном Примере

32 Управляемые формы [1С с нуля]

32 Управляемые формы [1С с нуля]

Generative AI Foundations on AWS | Part 1: Introduction to foundation models

Generative AI Foundations on AWS | Part 1: Introduction to foundation models

Tecton 0.6: Notebook-driven Development // Jason Dunne // MLOps Meetup #122

Tecton 0.6: Notebook-driven Development // Jason Dunne // MLOps Meetup #122

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

Our 1st MLOps Meetup // Luke Marsden // MLOps Meetup #1

Our 1st MLOps Meetup // Luke Marsden // MLOps Meetup #1

Deploying Many Models Efficiently with Ray Serve

Deploying Many Models Efficiently with Ray Serve

Изучите Microsoft Active Directory (ADDS) за 30 минут

Изучите Microsoft Active Directory (ADDS) за 30 минут

Цена российской нефти упала до $34.. Как жить дальше? | Дмитрий Потапенко*

Цена российской нефти упала до $34.. Как жить дальше? | Дмитрий Потапенко*

Self-Hosted LLMs on Kubernetes: A Practical Guide - Hema Veeradhi & Aakanksha Duggal, Red Hat

Self-Hosted LLMs on Kubernetes: A Practical Guide - Hema Veeradhi & Aakanksha Duggal, Red Hat

9 фруктов, которые разрушают сосуды после 60 лет | Врач объясняет

9 фруктов, которые разрушают сосуды после 60 лет | Врач объясняет

Building Massive-Scale Generative AI Services with Kubernetes and Open Source - John McBride

Building Massive-Scale Generative AI Services with Kubernetes and Open Source - John McBride

Серия N 41, заключительная.

Серия N 41, заключительная.

Exploring ML Model Serving with KServe (with fun drawings) - Alexa Nicole Griffith, Bloomberg

Exploring ML Model Serving with KServe (with fun drawings) - Alexa Nicole Griffith, Bloomberg

Сквозные многозадачные операции (MLOps) с MLflow и Kubeflow — Ник Чейз, CloudGeometry

Сквозные многозадачные операции (MLOps) с MLflow и Kubeflow — Ник Чейз, CloudGeometry

Владимир Пастухов* и Алексей Венедиктов*. Новогодние Пастуховские четверги! / 01.01.26

Владимир Пастухов* и Алексей Венедиктов*. Новогодние Пастуховские четверги! / 01.01.26

«Мастер и Маргарита» — один из главных романов 20 века

«Мастер и Маргарита» — один из главных романов 20 века

Building an ML Platform from Scratch: Live Coding Session // Alon Gubkin // MLOps Meetup #67

Building an ML Platform from Scratch: Live Coding Session // Alon Gubkin // MLOps Meetup #67

OpenShift Coffee Break: MLOps with OpenShift

OpenShift Coffee Break: MLOps with OpenShift

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]