Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

The Probability Monad

Автор: Compose Conference

Загружено: 2017-09-19

Просмотров: 8494

Описание:

Tikhon Jelvis
C◦mp◦se :: Conference
http://www.composeconference.org/2017/
May 18, 2017

Probability distributions form a monad, giving us a lightweight, surprisingly simple probabilistic language embedded in Haskell. We can write stochastic models as normal Haskell programs and then interpret them either exhaustively or by random sampling.

I’ll give an in-depth explanation of how a simple discrete probability distribution monad works, along with real-world examples from my work on supply chain optimization at Target. This simple probability monad has been a great fit for the stochastic optimization problems we’re facing at Target, where different solution methods require random sampling (simulation-based optimization) or the entire distribution (policy iteration, linear programming). As a bonus, this’ll give you a brief primer on supply chain optimization.

I’ll also talk about the very real performance shortcomings of this approach—which we’ve mostly managed to dodge at Target.

Finally, I’ll introduce some recent research that defines a free-monad based distribution type that can take advantage of cutting-edge research on probabilistic programming. This approach lets us work with continuous distributions and Bayesian conditioning, and lets us deploy modern sampling and probabilistic inference algorithms with performance comparable to dedicated probabilistic programming languages like Anglican.

This talk primarily draws on two papers:

‘Probabilistic Functional Programming in Haskell’ by Martin Erwig and Steve Kollmansberger which describes the discrete probability monad
‘Practical Probabilistic Programming with Monads’ by Adam Scibior, Zoubin Ghahramani and Andrew D. Gordon which describes how to extend the basic monadic approach with modern probabilistic programming techniques

The Probability Monad

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Learning F#: Case study with branch and bound

Learning F#: Case study with branch and bound

George Wilson - The Extended Functor Family

George Wilson - The Extended Functor Family

Phylogenetic Software in Haskell

Phylogenetic Software in Haskell

What is a Monad? - Computerphile

What is a Monad? - Computerphile

Почему

Почему "вероятность 0" не означает "невозможно"

From Rails to Elm and Haskell

From Rails to Elm and Haskell

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Simon Peyton-Jones: Escape from the ivory tower: the Haskell journey

Simon Peyton-Jones: Escape from the ivory tower: the Haskell journey

The Absolute Best Intro to Monads For Software Engineers

The Absolute Best Intro to Monads For Software Engineers

What is IO monad?

What is IO monad?

"Categories for the Working Hacker" by Philip Wadler

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Перестаньте мне рассказывать о _Generic

Перестаньте мне рассказывать о _Generic

Brian Beckman: Don't fear the Monad

Brian Beckman: Don't fear the Monad

Bidirectional Type Checking

Bidirectional Type Checking

Why Isn't Functional Programming the Norm? – Richard Feldman

Why Isn't Functional Programming the Norm? – Richard Feldman

Monads and Gonads

Monads and Gonads

George Wilson  - An Intuition for Propagators  - Compose Melbourne 2019

George Wilson - An Intuition for Propagators - Compose Melbourne 2019

`choose` Your Own Derivative

`choose` Your Own Derivative

Teaching the intersection of mathematics and functional programming

Teaching the intersection of mathematics and functional programming

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]