Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

David Higgins - Introduction to Julia for Python Developers

Автор: PyData

Загружено: 2016-05-31

Просмотров: 38148

Описание:

PyData Berlin 2016

Julia is a performance oriented language written from the ground-up to support numerical processing and parallelisation. The basic syntax of Julia resembles a cross between Matlab and Python, but offers performance which is comparable to compiled C-code. I will present an overview of the language with particular emphasis on where Python users may benefit in using it in their daily work.

Python users have long benefitted from the less verbose nature of Python, when compared with C and Fortran. However, Python was originally designed for scripting tasks, using dynamic types and widescale object orientation, neither of which features are necessarily beneficial when it comes to numerical computing. Thus, we have seen the widespread use of Python libraries for numerical computation (scipy, numpy, etc.).

Julia is a new language, developed at MIT, which attempts to learn from the experience of development of Python and similar languages. The main goals are to provide a non-verbose, performance oriented language written from the ground-up to support numerical processing and parallelisation. In its most basic syntax Julia resembles a cross between Matlab and Python, but via compilation through an intermediate level representation (llvm) it offers performance which is comparable to compiled C-code.

I am not going to argue that Julia is ready for primetime yet. However, it is definitely worth consideration by anyone currently resorting to cython or needing distributed access to large datasets.

I will present an outline/introduction to the language, including the main benefits and current weaknesses. Of particular interest to the audience may be the fact that Python libraries are importable and callable from within Julia, allowing a continuity of existing workflow but from a Julia-based host environment. My main focus will be for a numerically literate audience who are already contending with the technical limitations of Python and are curious about the new language in town.

Slides: https://github.com/daveh19/pydataberl... 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

David Higgins - Introduction to Julia for Python Developers

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Stefan Karpinski (Keynote): Julia for Data Analysis and Beyond

Stefan Karpinski (Keynote): Julia for Data Analysis and Beyond

Julia: to Lisp or not to Lisp?

Julia: to Lisp or not to Lisp?

Best programming language for science in 2024

Best programming language for science in 2024

Stefan Karpinski - Julia + Python = ♥

Stefan Karpinski - Julia + Python = ♥

MATLAB vs. Python vs. Julia: The Hidden Truths - Gareth Thomas | Podcast #147

MATLAB vs. Python vs. Julia: The Hidden Truths - Gareth Thomas | Podcast #147

Полная история программирования, Часть 3: Python, C++, JavaScript, PHP (с разбором кода)

Полная история программирования, Часть 3: Python, C++, JavaScript, PHP (с разбором кода)

Idai Guertel - Robot uses toddler-like self exploration for the development of body representations

Idai Guertel - Robot uses toddler-like self exploration for the development of body representations

Intro to Julia Programming Language with Detroit Tech Watch

Intro to Julia Programming Language with Detroit Tech Watch

5 признаков неопытности разработчика-самоучки (и как это исправить)

5 признаков неопытности разработчика-самоучки (и как это исправить)

Python vs Julia

Python vs Julia

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Michael Tiemann - Julia Solves the 2 Language Problem, However It Creates the 1.5 Language Problem

Michael Tiemann - Julia Solves the 2 Language Problem, However It Creates the 1.5 Language Problem

John Pearson | Introduction to Julia for Pythonistas

John Pearson | Introduction to Julia for Pythonistas

ПРЕКРАТИТЕ изучать эти языки программирования (для начинающих)

ПРЕКРАТИТЕ изучать эти языки программирования (для начинающих)

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

КАК УСТРОЕН TCP/IP?

КАК УСТРОЕН TCP/IP?

«Что не так с квантовой физикой и путешествиями во времени?» – Д. Горбунов, А. Арбузов, А. Семихатов

«Что не так с квантовой физикой и путешествиями во времени?» – Д. Горбунов, А. Арбузов, А. Семихатов

"Why Julia?" A high level description of the features and benefits of programming in Julia.

A Tour of Julia - Erik Engheim [ ACCU 2021 ]

A Tour of Julia - Erik Engheim [ ACCU 2021 ]

MATLAB → Julia 😊 | Thomas | JuliaCon 2024

MATLAB → Julia 😊 | Thomas | JuliaCon 2024

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]