If u = tan^−1[(x³+y³)/(x-y)] then prove that x.∂u/∂x+y.∂u/∂y=sin2u/Euler's Thm /Homogeneous function
Автор: Miah Pris Maths Academy
Загружено: 2025-04-11
Просмотров: 594
WELCOME TO@miahprismathsacademy3246
Hi friends, this video explains If u = tan^−1 [(x³+y³)/(x-y)], then prove that x.∂u/∂x+y.∂u/∂y = sin 2u
EMAIL ID : priskillalpaul@gmail.com
HOPE YOU UNDERSTOOD
THANK YOU FOR WATCHING.
#miahprismathsacademy#calculus#matricesandcalculus#matrices#unit3 #functionsofseveralvariables#exam#variables#ma3151#ma3151#unit3 #implicitdifferentiation#implicitfunction#partialdifferentiation #partialdifferentiation#Ifu=tan^−1[(x³+y³)/(x-y)]thenprovethatx∂u/∂x+y∂u/∂y=sin 2u#u=tan^−1[(x³+y³)/(x-y)#x∂u/∂x+y∂u/∂y=sin 2u#Euler's Thm#Homogeneousfunction#EulersTheoremintamil
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: