Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Di Fang - Mathematical Analysis of Many-Body Quantum Simulation with Coulomb Potentials

Автор: Institute for Pure & Applied Mathematics (IPAM)

Загружено: 2026-01-15

Просмотров: 351

Описание:

Recorded 15 January 2026. Di Fang of Duke University presents "Mathematical Analysis of Many-Body Quantum Simulation with Coulomb Potentials" at IPAM's New Frontiers in Quantum Algorithms for Open Quantum Systems Workshop.
Abstract: Efficient simulation of many-body quantum dynamics is central to advances in physics, chemistry, and quantum computing. A fundamental question is whether the simulation cost can scale polynomially with system size in the presence of realistic interactions. In this talk, we focus on many-body quantum systems with Coulomb interactions, which play a central role in electronic and molecular dynamics. We prove that first-order Trotterization for such unbounded Hamiltonians admits a polynomial dependence on the number of particles in the continuum limit, with a convergence rate of order 1/4 — in contrast to prior Trotter analyses for bounded operators, which diverge in this limit. The result holds for all initial wavefunctions in the domain of the Hamiltonian. This 1/4 - order rate is optimal, as previous work shows that it can be saturated by the ground state of the hydrogen atom. Moreover, higher-order Trotter formulas do not improve the worst-case scaling. We also discuss additional regularity conditions on the initial state under which the original Trotter convergence rate can be recovered. The main analytical challenges arise from the many-body structure and the singular nature of the Coulomb potential.
Learn more online at: https://www.ipam.ucla.edu/programs/wo...

Di Fang - Mathematical Analysis of Many-Body Quantum Simulation with Coulomb Potentials

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Yihui Quek - Hamiltonian Decoded Quantum Interferometry - IPAM at UCLA

Yihui Quek - Hamiltonian Decoded Quantum Interferometry - IPAM at UCLA

Ankur Moitra - Transitions in Quantum Spin Systems - IPAM at UCLA

Ankur Moitra - Transitions in Quantum Spin Systems - IPAM at UCLA

Why I Left Quantum Computing Research

Why I Left Quantum Computing Research

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

There's so much more to electric fields than you were taught

There's so much more to electric fields than you were taught

An Interview with the Winner of the 2025 Nobel Prize in Physics, John Martinis

An Interview with the Winner of the 2025 Nobel Prize in Physics, John Martinis

But what is quantum computing?  (Grover's Algorithm)

But what is quantum computing? (Grover's Algorithm)

There Is Something Faster Than Light

There Is Something Faster Than Light

M.  Isabel Franco Garrido - Optimization algorithms using Gibbs state preparation and beyond

M. Isabel Franco Garrido - Optimization algorithms using Gibbs state preparation and beyond

"It's Only Move 10!" || Alireza Firouzja SHOCKS Magnus Carlsen w/ INHUMAN Knight Sacrifice!

Lecture 1: Introduction to Superposition

Lecture 1: Introduction to Superposition

Terry Tao:

Terry Tao: "LLMs Are Simpler Than You Think – The Real Mystery Is Why They Work!"

Ewin Tang - A Dobrushin condition for quantum Markov chains - IPAM at UCLA

Ewin Tang - A Dobrushin condition for quantum Markov chains - IPAM at UCLA

Разоблачение: Неловкий лепет теоретиков струн (обсуждение с Брайаном Грином и Эдом Виттеном)

Разоблачение: Неловкий лепет теоретиков струн (обсуждение с Брайаном Грином и Эдом Виттеном)

Может ли у ИИ появиться сознание? — Семихатов, Анохин

Может ли у ИИ появиться сознание? — Семихатов, Анохин

Thiago Bergamaschi - A Structural Theory of Quantum Metastability: Markov Properties and Area Laws

Thiago Bergamaschi - A Structural Theory of Quantum Metastability: Markov Properties and Area Laws

The mind-bending reality of quantum mechanics - with Jim Al Khalili

The mind-bending reality of quantum mechanics - with Jim Al Khalili

The Strange Math That Predicts (Almost) Anything

The Strange Math That Predicts (Almost) Anything

Yu Tong - Quantum and classical algorithms for weakly interaction fermions at finite temperature

Yu Tong - Quantum and classical algorithms for weakly interaction fermions at finite temperature

Understanding Quantum Mechanics #4: It's not so difficult!

Understanding Quantum Mechanics #4: It's not so difficult!

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com