Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

TCS+ talk: Julia Chuzhoy

Автор: TCS+

Загружено: 29 дек. 2018 г.

Просмотров: 455 просмотров

Описание:

Speaker: Julia Chuzhoy (TTIC)

Title: Almost Polynomial Hardness of Node-Disjoint Paths in Grids

Abstract: In the classical Node-Disjoint Paths (NDP) problem, we are given an n-vertex graph G, and a collection of pairs of its vertices, called demand pairs. The goal is to route as many of the demand pairs as possible, where to route a pair we need to select a path connecting it, so that all selected paths are disjoint in their vertices.

The best current algorithm for NDP achieves an $O(\sqrt{n})$-approximation, while, until recently, the best negative result was a roughly $\Omega(\sqrt{\log n})$-hardness of approximation.
Recently, an improved $2^{\Omega(\sqrt{\log n})}$-hardness of approximation for NDP was shown, even if the underlying graph is a subgraph of a grid graph, and all source vertices lie on the boundary of the grid. Unfortunately, this result does not extend to grid graphs.

The approximability of NDP in grids has remained a tantalizing open question, with the best upper bound of $\tilde{O}(n^{1/4})$, and the best lower bound of APX-hardness. In this talk we come close to resolving this question, by showing an almost polynomial hardness of approximation for NDP in grid graphs.

Our hardness proof performs a reduction from the 3COL(5) problem to NDP, using a new graph partitioning problem as a proxy. Unlike the more standard approach of employing Karp reductions to prove hardness of approximation, our proof is a Cook-type reduction, where, given an input instance of 3COL(5), we produce a large number of instances of NDP, and apply an approximation algorithm for NDP to each of them. The construction of each new instance of NDP crucially depends on the solutions to the previous instances that were found by the approximation algorithm.

Joint work with David H.K. Kim and Rachit Nimavat.

TCS+ talk: Julia Chuzhoy

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

TCS+ Talk: Justin Gilmer (Google)

TCS+ Talk: Justin Gilmer (Google)

TCS+ Talk: Martín Costa (University of Warwick)

TCS+ Talk: Martín Costa (University of Warwick)

TCS+ Talk: Prasanna Ramakrishnan (Stanford)

TCS+ Talk: Prasanna Ramakrishnan (Stanford)

TCS+ Talk: Ryan Williams (MIT)

TCS+ Talk: Ryan Williams (MIT)

Solving Wordle using information theory

Solving Wordle using information theory

6 original pieces from 2019 \\ Jacob's Piano \\ Relaxing Piano [28min]

6 original pieces from 2019 \\ Jacob's Piano \\ Relaxing Piano [28min]

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

3-HOUR STUDY WITH ME | Hyper Efficient, Doctor, Focus Music, Deep Work, Pomodoro 50-10

3-HOUR STUDY WITH ME | Hyper Efficient, Doctor, Focus Music, Deep Work, Pomodoro 50-10

Топ-экономист Липсиц об обвале цен на нефть, крахе банков и бензиновом кризисе

Топ-экономист Липсиц об обвале цен на нефть, крахе банков и бензиновом кризисе

TCS+ Talk: Palak Jain (Boston University)

TCS+ Talk: Palak Jain (Boston University)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]