Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

USNCCM18 Plenary: Marta D'Elia, Atomic Machines & Stanford ICME

Автор: USACM

Загружено: 2025-08-29

Просмотров: 220

Описание:

On the Use of Graph Networks in Scientific Applications

Marta D'Elia, Atomic Machines & Stanford ICME

In the context of scientific and industrial applications, we often have to deal with unstructured spatial and temporal data obtained from numerical simulations and the real world. The data is usually in the form of a mesh or a point cloud. In this context, graph neural networks (GNNs) have proved to be effective tools to reproduce the data behavior; however, depending on the physical nature of the datasets, variations of vanilla GNNs have to be considered to ensure accurate results. Furthermore, when only a point cloud is available, one is faced with the question of how (and whether) to build a corresponding graph.

In this presentation we go over general challenges in the use of GNNs in computational mechanics and fluid dynamics. Special attention will be given to particle-accelerator simulations; a computationally demanding class of problems for which rapid design and real-time control are challenging. We propose a machine learning-based surrogate model that leverages both graph and point networks to predict particle-accelerator behavior across different machine settings. Our model is trained on high-fidelity simulations of electron beam acceleration, capturing complex, nonlinear interactions among particles distributed across several initial state dimensions and machine parameters. Our results show the model’s to accurately track electron beams at downstream observation points, outperforming baseline graph convolutional networks. This framework accommodates key symmetries inherent in particle distributions, enhancing stability and interpretability. We also go over the extension of these architectures to autoregressive tracking across multiple timesteps. This research offers a powerful approach to reducing computational demands in particle-accelerator simulations, contributing to advancements in real-time optimization and control. This work had been performed at Stanford in collaboration with SLAC.

USNCCM18 Plenary: Marta D'Elia, Atomic Machines & Stanford ICME

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

USNCCM18 Plenary: Dennis Kochmann, ETH Zurich

USNCCM18 Plenary: Dennis Kochmann, ETH Zurich

USNCCM18 Semi-Plenary: Vipin Kumar, University of Minnesota

USNCCM18 Semi-Plenary: Vipin Kumar, University of Minnesota

Theoretical Foundations of Graph Neural Networks

Theoretical Foundations of Graph Neural Networks

USACM Nanotechnology TTA Seminar - Heather Kulik

USACM Nanotechnology TTA Seminar - Heather Kulik

System Design Concepts Course and Interview Prep

System Design Concepts Course and Interview Prep

USNCCM18 Plenary: Roger Ghanem, University of Southern California

USNCCM18 Plenary: Roger Ghanem, University of Southern California

Intro to graph neural networks (ML Tech Talks)

Intro to graph neural networks (ML Tech Talks)

Гипотеза Пуанкаре — Алексей Савватеев на ПостНауке

Гипотеза Пуанкаре — Алексей Савватеев на ПостНауке

USACM Uncertainty Quantification and Probabilistic Modeling TTA Seminar - Ionut-Gabriel Farcas

USACM Uncertainty Quantification and Probabilistic Modeling TTA Seminar - Ionut-Gabriel Farcas

Понимание инженерных чертежей

Понимание инженерных чертежей

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

USACM Nanotechnology TTA Seminar - Christoph Ortner

USACM Nanotechnology TTA Seminar - Christoph Ortner

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Как происходит модернизация остаточных соединений [mHC]

Как происходит модернизация остаточных соединений [mHC]

USNCCM18 Semi-Plenary: John Dolbow, Duke University

USNCCM18 Semi-Plenary: John Dolbow, Duke University

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

LLMs and AI Agents: Transforming Unstructured Data

LLMs and AI Agents: Transforming Unstructured Data

Graph Neural Networks (GNN) using Pytorch Geometric | Stanford University

Graph Neural Networks (GNN) using Pytorch Geometric | Stanford University

USACM Novel Methods TTA Seminar - Paola F. Antonietti & Amirhossein Arzani

USACM Novel Methods TTA Seminar - Paola F. Antonietti & Amirhossein Arzani

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com