Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Model Based Reinforcement Learning: Policy Iteration, Value Iteration, and Dynamic Programming

Автор: Steve Brunton

Загружено: 2022-01-07

Просмотров: 137633

Описание:

Here we introduce dynamic programming, which is a cornerstone of model-based reinforcement learning. We demonstrate dynamic programming for policy iteration and value iteration, leading to the quality function and Q-learning.

Citable link for this video: https://doi.org/10.52843/cassyni.6fs4s9

This is a lecture in a series on reinforcement learning, following the new Chapter 11 from the 2nd edition of our book "Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control" by Brunton and Kutz

Book Website: http://databookuw.com
Book PDF: http://databookuw.com/databook.pdf

Amazon: https://www.amazon.com/Data-Driven-Sc...

Brunton Website: eigensteve.com

This video was produced at the University of Washington

Model Based Reinforcement Learning: Policy Iteration, Value Iteration, and Dynamic Programming

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Q-Learning: Model Free Reinforcement Learning and Temporal Difference Learning

Q-Learning: Model Free Reinforcement Learning and Temporal Difference Learning

Solve Markov Decision Processes with the Value Iteration Algorithm - Computerphile

Solve Markov Decision Processes with the Value Iteration Algorithm - Computerphile

Nonlinear Control: Hamilton Jacobi Bellman (HJB) and Dynamic Programming

Nonlinear Control: Hamilton Jacobi Bellman (HJB) and Dynamic Programming

Reinforcement Learning Series: Overview of Methods

Reinforcement Learning Series: Overview of Methods

Markov Decision Processes 1 - Value Iteration | Stanford CS221: AI (Autumn 2019)

Markov Decision Processes 1 - Value Iteration | Stanford CS221: AI (Autumn 2019)

Уравнения Беллмана, динамическое программирование, итерация обобщённой политики | Обучение с подк...

Уравнения Беллмана, динамическое программирование, итерация обобщённой политики | Обучение с подк...

Overview of Deep Reinforcement Learning Methods

Overview of Deep Reinforcement Learning Methods

Markov Decision Processes - Computerphile

Markov Decision Processes - Computerphile

Who's Adam and What's He Optimizing? | Deep Dive into Optimizers for Machine Learning!

Who's Adam and What's He Optimizing? | Deep Dive into Optimizers for Machine Learning!

Reinforcement Learning: Machine Learning Meets Control Theory

Reinforcement Learning: Machine Learning Meets Control Theory

Reinforcement Learning

Reinforcement Learning

Why Choose Model-Based Reinforcement Learning?

Why Choose Model-Based Reinforcement Learning?

Lecture 17 - MDPs & Value/Policy Iteration | Stanford CS229: Machine Learning Andrew Ng (Autumn2018)

Lecture 17 - MDPs & Value/Policy Iteration | Stanford CS229: Machine Learning Andrew Ng (Autumn2018)

Момент, когда мы перестали понимать ИИ [AlexNet]

Момент, когда мы перестали понимать ИИ [AlexNet]

Parameter Estimation and Fitting Distributions

Parameter Estimation and Fitting Distributions

Deep Reinforcement Learning: Neural Networks for Learning Control Laws

Deep Reinforcement Learning: Neural Networks for Learning Control Laws

Policy and Value Iteration

Policy and Value Iteration

Обучение с подкреплением с нуля

Обучение с подкреплением с нуля

Монте-Карло и внеполитические методы | Обучение с подкреплением, часть 3

Монте-Карло и внеполитические методы | Обучение с подкреплением, часть 3

Function Approximation | Reinforcement Learning Part 5

Function Approximation | Reinforcement Learning Part 5

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]