Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Benchmarking Time Series Foundation Models with sktime

Автор: PyData

Загружено: 2025-10-05

Просмотров: 616

Описание:

🔊 Recorded at PyCon DE & PyData 2025, April 23, 2025
https://2025.pycon.de/program/GUKTNX/

🎓 sktime's benchmarking capabilities enable systematic evaluation of time series foundation models against traditional approaches for data-driven decision making.

Speakers:
Benedikt Heidrich

Description:
In this presentation, Dr. Benedikt Heidrich examines the benchmarking capabilities of sktime for evaluating time series foundation models. The talk explores how sktime, an open-source Python toolbox for time series machine learning, provides unified interfaces for comparing different forecasting approaches, including emerging foundation models like Morai, Tiny Times Mixer, and Kronos. Dr. Heidrich demonstrates sktime's benchmarking module through practical examples of energy demand forecasting and hierarchical data forecasting, highlighting the importance of robust evaluation across different datasets and scenarios. The presentation emphasizes that while foundation models show promise, their effectiveness varies significantly depending on the specific use case and data characteristics. The benchmarking framework enables reproducible, verifiable comparisons between traditional forecasting methods and foundation models through features such as cross-validation splitting, multiple evaluation metrics, and runtime analysis. Dr. Heidrich illustrates how sktime's benchmarking capabilities can help practitioners make informed decisions about model selection by providing detailed insights into model performance across different time horizons and data hierarchies. The key takeaway is that systematic benchmarking is essential for determining whether foundation models offer advantages over traditional approaches for specific time series applications.

⭐️ About PyCon DE & PyData:
The PyCon DE & PyData conference unite the Python, AI, and data science communities, offering a unique platform for collaboration and innovation. The PyCon DE & PyData 2025 conference, provided an exceptional experience, fostering deeper connections within the Python community while showcasing advancements in AI and data science. Attendees enjoyed a diverse and engaging program, solidifying the event as a highlight for Python and AI enthusiasts nationwide.

Follow us:
• LinkedIn:   / 28908640  
• X: https://www.x.com/pyconde

Links:
• Conference website: http://pycon.de
• Other sessions: https://2025.pycon.de/talks/

The conference is organized by
• Python Softwareverband e.V.: http://pysv.org
• NumFOCUS Inc.: http://numfocus.org
• Pioneers Hub gemeinnützige GmbH: http://pioneershub.org


If you enjoyed this session, please like, comment, and subscribe to our channel for more insightful talks and discussions.
Share this video with your network to spread the knowledge!

Hashtags:
#Python #PyConDE #PyData #OpenSource #AI #DataScience #MachineLearning #SoftwareDevelopment #LLMs #Community

Acknowledgements:
Special thanks to all the volunteers and sponsors who made this event possible.

About:
Python Softwareverband e.V.:
PySV is a non-profit that promotes the use and development of Python in Germany through events, education, and advocacy, fostering an open Python community.

NumFOCUS Inc.
supports open-source scientific computing by providing financial and logistical support to key projects like NumPy and Jupyter, promoting sustainable development and collaboration.

Pioneers Hub gemeinnützige GmbH:
is a non-profit fostering innovation in AI and tech by connecting experts and promoting knowledge exchange through events and collaborative initiatives.
www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

Benchmarking Time Series Foundation Models with sktime

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Abhishek Murthy - Backtesting Time Series Forecasting Algorithms in SKTime and SKForecast

Abhishek Murthy - Backtesting Time Series Forecasting Algorithms in SKTime and SKForecast

Time Series Foundation Models: A Tutorial and Survey

Time Series Foundation Models: A Tutorial and Survey

expectation: A modern take on statistical A/B testing with e-values and martingales

expectation: A modern take on statistical A/B testing with e-values and martingales

Стоимость небольших криптографических компаний вот-вот резко возрастет.

Стоимость небольших криптографических компаний вот-вот резко возрастет.

Cross-Validation for Time Series Forecasting | Python Tutorial

Cross-Validation for Time Series Forecasting | Python Tutorial

Chronos: Time series forecasting in the age of pretrained models

Chronos: Time series forecasting in the age of pretrained models

Are Time Series Foundation Models Ready to Revolutionize Predictive Building Analytics?

Are Time Series Foundation Models Ready to Revolutionize Predictive Building Analytics?

Building a HybridRAG Document Question-Answering System

Building a HybridRAG Document Question-Answering System

Как происходит модернизация остаточных соединений [mHC]

Как происходит модернизация остаточных соединений [mHC]

TabPFN: Foundation Models for Tabular Data | Kaggle Grandmaster Demo & Deep Dive

TabPFN: Foundation Models for Tabular Data | Kaggle Grandmaster Demo & Deep Dive

Combinatorial Purged Cross-Validation Explained

Combinatorial Purged Cross-Validation Explained

Учебное пособие по основам моделей и почему не стоит их дорабатывать

Учебное пособие по основам моделей и почему не стоит их дорабатывать

Understanding Data Structures: Time Series, Cross-Sectional, and Panel Data Explained

Understanding Data Structures: Time Series, Cross-Sectional, and Panel Data Explained

Data Science Project: Engineer Time Series Data For Classification With Machine Learning

Data Science Project: Engineer Time Series Data For Classification With Machine Learning

Самая сложная модель из тех, что мы реально понимаем

Самая сложная модель из тех, что мы реально понимаем

Deepyaman Datta-✕-Data engineering with Python the right way-  -PyData Boston 2025

Deepyaman Datta-✕-Data engineering with Python the right way- -PyData Boston 2025

sktime - A Unified Toolbox for ML with Time Series - Markus Löning | PyData Global 2021

sktime - A Unified Toolbox for ML with Time Series - Markus Löning | PyData Global 2021

Mastering Time Series Forecasting: Build a Transformer Model in Keras - Predict Stock prices

Mastering Time Series Forecasting: Build a Transformer Model in Keras - Predict Stock prices

NotebookLM внутри чата Gemini - идеальная связка?

NotebookLM внутри чата Gemini - идеальная связка?

СРОЧНО отключи это в Telegram! Защити себя ПРОСТЫМ и ЗАКОННЫМ способом

СРОЧНО отключи это в Telegram! Защити себя ПРОСТЫМ и ЗАКОННЫМ способом

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com