Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Vision Transformers | ViTs in Hindi

Автор: Code With Aarohi Hindi

Загружено: 2024-10-21

Просмотров: 7355

Описание:

Vision Transformer, also known as ViT, is a deep learning model that applies the Transformer architecture, originally developed for natural language processing, to computer vision tasks. It has gained attention for its ability to achieve competitive performance on image classification and other vision tasks, even without relying on convolutional neural networks (CNNs).

For queries: You can comment in comment section or you can mail me at [email protected]

The key idea behind the Vision Transformer is to divide an input image into smaller patches and treat them as tokens, similar to how words are treated in natural language processing. Each patch is then linearly projected and embedded with position information. These patch embeddings, along with position embeddings, are fed into a stack of Transformer encoder layers.

The Vision Transformer has shown promising results, demonstrating competitive performance on image classification tasks, object detection, and semantic segmentation.

#computervision #transformers #vits

Vision Transformers | ViTs in Hindi

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Image Classification Using Vision Transformer in Hindi | ViTs on Google Colab

Image Classification Using Vision Transformer in Hindi | ViTs on Google Colab

Swin Transformer — бумажное объяснение

Swin Transformer — бумажное объяснение

Convolutional Neural Network CNN for Handwritten Digit Recognition

Convolutional Neural Network CNN for Handwritten Digit Recognition

Краткое руководство по Vision Transformer — теория и код за (почти) 15 минут

Краткое руководство по Vision Transformer — теория и код за (почти) 15 минут

Vision Transformer Basics

Vision Transformer Basics

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

Transformers for beginners | Hindi

Transformers for beginners | Hindi

ВНЕДРЕНИЕ ПАТЧА | Vision Transformers: объяснение

ВНЕДРЕНИЕ ПАТЧА | Vision Transformers: объяснение

Почему «Трансформеры» заменяют CNN?

Почему «Трансформеры» заменяют CNN?

Swin Transformer paper animated and explained

Swin Transformer paper animated and explained

Introduction to Vision Transformer (ViT) | An image is worth 16x16 words | Computer Vision Series

Introduction to Vision Transformer (ViT) | An image is worth 16x16 words | Computer Vision Series

LangGraph explained | LangChain vs LangGraph

LangGraph explained | LangChain vs LangGraph

Vision Transformer explained in detail | ViTs

Vision Transformer explained in detail | ViTs

Transformer Architecture — Foundations of Large Language Models

Transformer Architecture — Foundations of Large Language Models

EfficientML.ai Lecture 14 - Vision Transformer (MIT 6.5940, Fall 2023)

EfficientML.ai Lecture 14 - Vision Transformer (MIT 6.5940, Fall 2023)

L-1 | LLMs Explained — Conceptually & Mathematically | Lecture 1 | LLMs Course

L-1 | LLMs Explained — Conceptually & Mathematically | Lecture 1 | LLMs Course

How positional encoding works in transformers?

How positional encoding works in transformers?

Vision Transformer for Image Classification

Vision Transformer for Image Classification

Building a Multi-Agent AI System: How to Use Multiple Agents in LangGraph!

Building a Multi-Agent AI System: How to Use Multiple Agents in LangGraph!

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]