Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

The Karush–Kuhn–Tucker (KKT) Conditions and the Interior Point Method for Convex Optimization

Автор: Visually Explained

Загружено: 2021-08-05

Просмотров: 185175

Описание:

A gentle and visual introduction to the topic of Convex Optimization (part 3/3). In this video, we continue the discussion on the principle of duality, which ultimately leads us to the "interior point method" in optimization. Along the way, we derive the celebrated Karush–Kuhn–Tucker (KKT) conditions.


This is the third video of the series.

Part 1: What is (Mathematical) Optimization? (   • What Is Mathematical Optimization?  )
Part 2: Convexity and the Principle of (Lagrangian) Duality (   • Convexity and The Principle of Duality  )
Part 3: Algorithms for Convex Optimization (Interior Point Methods). (   • The Karush–Kuhn–Tucker (KKT)  Conditions a...  )

--------------------------------
References:
Boyd and Vandenberghe's wonderful book on convex optimization: https://stanford.edu/~boyd/cvxbook/


--------------------------------
Typos and precisions:

At 12:50 by "grad_f and grad_g are inversely proportional", I mean grad_f and grad_g are proportional to each other with a negative coefficients.

At 13:47, the correct feasibility equation for x is g(x) \le 0, and not g(x) \ge 0 as stated in the video. This typo goes away starting from 15:11

--------------------------------

Timestamps:
0:00 Previously
0:25 Working Example
8:03 Duality for Convex Optimization Problems

10:38 KKT Conditions
15:00 Interior Point Method
21:00 Conclusion


--------------------------
Credit:
🐍 Manim and Python : https://github.com/3b1b/manim
🐵 Blender3D: https://www.blender.org/
🗒️ Emacs: https://www.gnu.org/software/emacs/


This video would not have been possible without the help of Gökçe Dayanıklı.

--------------------------
🎵 Music

Vincent Rubinetti (https://vincerubinetti.bandcamp.com/)
Carefree by Kevin MacLeod (   • Thinking Music  )

The Karush–Kuhn–Tucker (KKT)  Conditions and the Interior Point Method for Convex Optimization

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

What Is Mathematical Optimization?

What Is Mathematical Optimization?

Understanding Lagrange Multipliers Visually

Understanding Lagrange Multipliers Visually

Выпуклость и принцип двойственности

Выпуклость и принцип двойственности

Karush-Kuhn-Tucker (KKT) conditions: motivation and theorem

Karush-Kuhn-Tucker (KKT) conditions: motivation and theorem

Convex Optimization: An Overview by Stephen Boyd: The 3rd Wook Hyun Kwon Lecture

Convex Optimization: An Overview by Stephen Boyd: The 3rd Wook Hyun Kwon Lecture

Лекция 40(Б): Условия и теорема Куна-Таккера

Лекция 40(Б): Условия и теорема Куна-Таккера

Visually Explained: Newton's Method in Optimization

Visually Explained: Newton's Method in Optimization

Stanford EE364A Convex Optimization I Stephen Boyd I 2023 I Lecture 5

Stanford EE364A Convex Optimization I Stephen Boyd I 2023 I Lecture 5

Gradients, Hessians, and All Those Derivative Tests

Gradients, Hessians, and All Those Derivative Tests

Lecture 40(A): Kuhn-Tucker Conditions: Conceptual and geometric insight

Lecture 40(A): Kuhn-Tucker Conditions: Conceptual and geometric insight

Lecture 1 | Convex Optimization I (Stanford)

Lecture 1 | Convex Optimization I (Stanford)

Karush-Kuhn-Tucker (KKT) Punkte berechnen

Karush-Kuhn-Tucker (KKT) Punkte berechnen

Лекция 40(C): Условия Куна-Таккера: пример

Лекция 40(C): Условия Куна-Таккера: пример

L1.6 –⁠ Inequality-constrained optimization: KKT conditions as first-order conditions of optimality

L1.6 –⁠ Inequality-constrained optimization: KKT conditions as first-order conditions of optimality

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Stanford EE364A Convex Optimization I Stephen Boyd I 2023 I Lecture 1

Stanford EE364A Convex Optimization I Stephen Boyd I 2023 I Lecture 1

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Interior-point methods for constrained optimization (Logarithmic barrier function and central path)

Interior-point methods for constrained optimization (Logarithmic barrier function and central path)

Lecture 8 | Convex Optimization I (Stanford)

Lecture 8 | Convex Optimization I (Stanford)

What Feynman Discovered About Light That NO ONE Can Explain

What Feynman Discovered About Light That NO ONE Can Explain

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]