The Hidden Problem in ClickHouse Streaming Pipelines
Автор: Sepahram Data Eng. School
Загружено: 2025-12-27
Просмотров: 32
⚠️ The Hidden Trap in ClickHouse Streaming
Why Your Real-Time Analytics Might Be Completely Wrong
ClickHouse adoption is growing rapidly for good reason — blazing-fast queries, columnar architecture, massive dataset processing 🚀
But there's a critical issue:
❗ If your streaming pipeline isn't designed correctly, your data gets silently corrupted and dashboards show wrong numbers — without any errors or warnings.
🧩 The Common Pattern
Many teams build pipelines like this:
Kafka → ReplacingMergeTree → Materialized View → Aggregation Tables
Looks logical: deduplication, aggregation, all automated.
But this is where the problem hides.
🧠 The Root Cause
1️⃣ ReplacingMergeTree doesn't deduplicate on insert
Only during background merges
Duplicates exist for a while (sometimes long)
2️⃣ Materialized Views execute on raw data
Before deduplication happens
Result:
Duplicate arrives → View fires → Aggregation updates → Source deduplicates later
But aggregated stats? Corrupted forever ❌
3️⃣ No automatic fix
Once wrong, stays wrong
🌍 When Does This Happen?
More often than you think:
Network failures
Kafka rebalancing
Consumer restarts
At-least-once delivery (Kafka default)
Backfills and testing mistakes
Result:
Wrong revenue, user counts, conversion rates
No errors in logs — just silent corruption 🚨
🛠️ Solutions
✅ Prevent duplicates from entering
✅ Don't rely only on ClickHouse deduplication
✅ Design idempotent summary tables
✅ FINAL is not production-ready (too expensive)
✅ Use real streaming engines for critical systems
Flink, RisingWave, Materialize provide:
Exactly-once semantics
Proper updates and retracts
True stream-level deduplication
ClickHouse becomes the serving layer (where it shines) ⚡
🏗️ Mature Architecture
Kafka → Streaming Engine → ClickHouse
(Correct Processing) (Fast Queries)
🎥 Hands-On Workshop
Watch me demonstrate this problem live:
Healthy pipeline → Duplicate data arrives → Silent corruption
Why FINAL shows different numbers
How to fix the architecture
Includes:
Complete setup (Redpanda, ClickHouse, Python)
Live corruption demonstration
Verification scripts
All source code and configs
Solutions and best practices
💡 Who Should Watch:
Data engineers with streaming pipelines
ClickHouse users doing real-time analytics
Teams facing data reliability issues
🔗 Resources:
Code: https://github.com/sepahram-school/wo...
📌 Key Takeaways:
-= ReplacingMergeTree doesn't prevent duplicate inserts
-= Materialized Views fire before deduplication
-= Aggregations can be permanently wrong
-= For critical real-time work, use proper streaming engines
#ClickHouse #DataEngineering #StreamProcessing #RealTimeAnalytics #Kafka #datareliability
------------------------------------------------------------------------------
در این ویدئو نشان میدهیم که چرا در سامانههای تحلیل برخط مبتنی بر کلیکهاوس، اگر معماری جریان داده بهدرستی طراحی نشود، آمار و شاخصها میتوانند بهصورت کاملاً بیسروصدا اشتباه شوند.
مسئله از اینجا شروع میشود که حذف دادههای تکراری بلافاصله هنگام ورود داده انجام نمیشود و متریالایزد ویوها نیز روی داده خام اجرا میشوند؛ در نتیجه اگر حتی یک رویداد تکراری وارد سامانه شود، محاسبات تجمیعی همان لحظه چند بار بهروزرسانی شده و این خطا برای همیشه در آمار باقی میماند، بدون آنکه هیچ خطا یا هشداری ثبت شود.
در این ویدئو بهصورت عملی این مشکل را میبینید و راه حل های کلی برای رفع آن را هم با هم مرور میکنیم
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: