Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Ryutaro Tanno: Neural Networks and Decision Trees

Автор: London Machine Learning Meetup

Загружено: 2019-04-11

Просмотров: 4809

Описание:

Deep neural networks and decision trees operate on largely separate paradigms; typically, the former performs representation learning with pre-specified architectures, while the latter is characterised by learning hierarchies over pre-specified features with data-driven architectures. We unite the two via adaptive neural trees (ANTs), a model that incorporates representation learning into edges, routing functions and leaf nodes of a decision tree, along with a backpropagation-based training algorithm that adaptively grows the architecture from primitive modules (e.g., convolutional layers). We demonstrate that, whilst achieving competitive performance on classification and regression datasets, ANTs benefit from (i) lightweight inference via conditional computation, (ii) increased interpretability via hierarchical separation of features e.g. learning meaningful class associations, such as separating natural vs. man-made objects, and (iii) a mechanism to adapt the architecture to the size and complexity of the training dataset.

Bio: Ryutaro Tanno is a 3rd year PhD student at UCL on a Microsoft Research scholarship. After completing MASt in Mathematics, and MPhil from Computational and Biological Learning group in university of Cambridge, he started his Phd in 2015 under the supervision of Daniel C. Alexander at University College London and Antonio Criminisi of Microsoft Research Cambridge. His main interest lies in developing high-performance machine learning algorithms which are more interpretable and safer to use in healthcare applications. He received a best paper award in MICCAI 2017, the largest international conference on machine learning for medical imaging applications.

Sponsors
Man AHL: At Man AHL, we mix machine learning, computer science and engineering with terabytes of data to invest billions of dollars every day.

https://evolution.ai/ : Machines that Read - Intelligent data extraction from corporate and financial documents.

Ryutaro Tanno: Neural Networks and Decision Trees

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Kilian Weinberger,

Kilian Weinberger, "Interpretable Machine Learning"

Майкл Бетанкур: Масштабируемый байесовский вывод с гамильтоновым Монте-Карло

Майкл Бетанкур: Масштабируемый байесовский вывод с гамильтоновым Монте-Карло

Neural Networks are Decision Trees (w/ Alexander Mattick)

Neural Networks are Decision Trees (w/ Alexander Mattick)

Regression Trees, Clearly Explained!!!

Regression Trees, Clearly Explained!!!

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Benjamin Schrauwen: Deep learning for 3D printing manufacturing

Benjamin Schrauwen: Deep learning for 3D printing manufacturing

J. Z. Kolter and A. Madry: Adversarial Robustness - Theory and Practice (NeurIPS 2018 Tutorial)

J. Z. Kolter and A. Madry: Adversarial Robustness - Theory and Practice (NeurIPS 2018 Tutorial)

Ziming Liu | KAN: Kolmogorov-Arnold Networks

Ziming Liu | KAN: Kolmogorov-Arnold Networks

Roger Penrose - Forbidden crystal symmetry in mathematics and architecture

Roger Penrose - Forbidden crystal symmetry in mathematics and architecture

Building Data Visualisations in Python in Minutes • Kris Jenkins • GOTO 2025

Building Data Visualisations in Python in Minutes • Kris Jenkins • GOTO 2025

Andrew Ng: Deep Learning, Self-Taught Learning and Unsupervised Feature Learning

Andrew Ng: Deep Learning, Self-Taught Learning and Unsupervised Feature Learning

StatQuest: Случайные леса Часть 1 - Создание, использование и оценка

StatQuest: Случайные леса Часть 1 - Создание, использование и оценка

A friendly introduction to Convolutional Neural Networks and Image Recognition

A friendly introduction to Convolutional Neural Networks and Image Recognition

Feature Engineering with H2O - Dmitry Larko, Senior Data Scientist, H2O.ai

Feature Engineering with H2O - Dmitry Larko, Senior Data Scientist, H2O.ai

18. Information Theory of Deep Learning. Naftali Tishby

18. Information Theory of Deep Learning. Naftali Tishby

Ali Behrouz | Titans: Learning to Memorize at Test Time

Ali Behrouz | Titans: Learning to Memorize at Test Time

Decision and Classification Trees, Clearly Explained!!!

Decision and Classification Trees, Clearly Explained!!!

Момент, когда мы перестали понимать ИИ [AlexNet]

Момент, когда мы перестали понимать ИИ [AlexNet]

How convolutional neural networks work, in depth

How convolutional neural networks work, in depth

Max Welling - Make VAEs Great Again: Unifying VAEs and Flows

Max Welling - Make VAEs Great Again: Unifying VAEs and Flows

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]