Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Lecture 22: CS217 | SVM Implementation & Introduction to Hidden Markov Models | AI-ML | IITB 2025

Автор: Prof. Pushpak Bhattacharyya | IIT Bombay

Загружено: 2025-03-10

Просмотров: 682

Описание:

Welcome to Lecture 22 of the CS217: AI-ML Course by IIT Bombay. In this session, Prof. Pushpak Bhattacharya begins with a review of previous concepts before guiding students through the practical implementation of Support Vector Machines using scikit-learn, and introducing Hidden Markov Models (HMMs) as a powerful technique for sequence labeling tasks.

Topics Covered:

SVM Implementation with Scikit-learn - Detailed overview of implementing SVMs using Python's sklearn package, including data handling with pandas, attribute normalization using standard scalar, and evaluating model performance through precision, recall, and F-score metrics. Discussion of how these evaluation metrics are mathematically defined and their practical implications in machine learning.
Precision, Recall & F-Score - In-depth explanation of evaluation metrics for binary classification, visualizing the relationship between true positives, false positives, false negatives, and true negatives. Special focus on the harmonic mean (F-score) and why it's preferred over arithmetic mean when combining precision and recall.
Introduction to Hidden Markov Models - Foundation concepts of HMMs for sequence labeling problems, including the noisy channel model and applications in computer vision (posture recognition) and natural language processing (part-of-speech tagging). Presentation of the classic urn-and-balls example to illustrate hidden states and observations.
HMM Algorithms Overview - Introduction to the three classic problems in HMM: finding the most likely state sequence (Viterbi algorithm), computing observation sequence probability (Forward-Backward algorithm), and parameter estimation (Baum-Welch algorithm).

This lecture bridges theoretical concepts with practical implementation while introducing a new probabilistic framework for handling sequential data. It offers essential guidance for students preparing for their upcoming lab assignment on SVMs while laying the groundwork for future sessions on Hidden Markov Models.

\#supportvectormachines #svm #sklearnimplementation #hiddenmarkovmodels #hmm #machinelearning #aiml #iitbombay #computerscience #sequencelabeling #precision #recall #fscore #evaluationmetrics #viterbi #baumwelch #noisychannel #probabilisticmodels #cs217 #aimlcourse #posrecognition #partofspeechtagging #classifiers #computerscience #machinelearningtheory #aiml #iitb #chatgpt #anthropic #deepseek #grok

Lecture 22: CS217 | SVM Implementation & Introduction to Hidden Markov Models | AI-ML | IITB 2025

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Lecture 21: CS217 | SVM: Primal-Dual Formulation, KKT Conditions & Kernel Trick | AI-ML | IITB 2025

Lecture 21: CS217 | SVM: Primal-Dual Formulation, KKT Conditions & Kernel Trick | AI-ML | IITB 2025

Алгоритм Витерби | HMM | Решенный пример декодирования

Алгоритм Витерби | HMM | Решенный пример декодирования

The Viterbi Algorithm : Natural Language Processing

The Viterbi Algorithm : Natural Language Processing

Чому ваша кар'єра в IT під загрозою?

Чому ваша кар'єра в IT під загрозою?

NLP

NLP

Prof. Hrishikesh Gadgil, Department of Aerospace Engineering, IIT Bombay

Prof. Hrishikesh Gadgil, Department of Aerospace Engineering, IIT Bombay

Natural Language Processing

Natural Language Processing

Lecture 1: CS217 Introduction & Search | Course Logistics | AI-ML Course | IIT Bombay | 2025

Lecture 1: CS217 Introduction & Search | Course Logistics | AI-ML Course | IIT Bombay | 2025

NVIDIA’s AI Finally Solved Walking In Games

NVIDIA’s AI Finally Solved Walking In Games

Tutorial 62: Hidden Markov Model (HMM) A Statistical Model

Tutorial 62: Hidden Markov Model (HMM) A Statistical Model

Graph Representation Learning: William L. Hamilton - 2021 McGill AI Learnathon

Graph Representation Learning: William L. Hamilton - 2021 McGill AI Learnathon

Lecture 31: CS217 | AI Gets Real: Powering Robots, Logistics & Finance | IITB 2025

Lecture 31: CS217 | AI Gets Real: Powering Robots, Logistics & Finance | IITB 2025

Skandaliczna nominacja dla kard. Rysia. Abp Jan Paweł Lenga

Skandaliczna nominacja dla kard. Rysia. Abp Jan Paweł Lenga

Выживи 30 Дней Взаперти В Небе, Выиграй $250,000

Выживи 30 Дней Взаперти В Небе, Выиграй $250,000

ChipStory - Episode 8 - Prof. Rajesh Zele - IIT Bombay

ChipStory - Episode 8 - Prof. Rajesh Zele - IIT Bombay

Lecture 7: CS626  POS Tagging using Conditional Random Fields (CRF) | IIT Bombay | 2024

Lecture 7: CS626 POS Tagging using Conditional Random Fields (CRF) | IIT Bombay | 2024

ChipStory - Episode 10 - Fabulous Fabless - Prof. Rajesh Zele - IIT Bombay

ChipStory - Episode 10 - Fabulous Fabless - Prof. Rajesh Zele - IIT Bombay

Lecture 4: CS772 | Deep Learning for NLP | Perceptron, Sigmoid, Softmax, POS | IIT Bombay 2025

Lecture 4: CS772 | Deep Learning for NLP | Perceptron, Sigmoid, Softmax, POS | IIT Bombay 2025

Lecture 29: CS217 | Human-Centered AI: Biases, Challenges, and Ethical Considerations | IITB 2025

Lecture 29: CS217 | Human-Centered AI: Biases, Challenges, and Ethical Considerations | IITB 2025

Lecture 12: CS772 | Deep Learning for NLP | Guest Lecture (Jimut Bahan Pal) | IIT Bombay | 2025

Lecture 12: CS772 | Deep Learning for NLP | Guest Lecture (Jimut Bahan Pal) | IIT Bombay | 2025

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]