Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

François Chollet on OpenAI o-models and ARC

Автор: Machine Learning Street Talk

Загружено: 2025-01-08

Просмотров: 88356

Описание:

François Chollet discusses the outcomes of the ARC-AGI (Abstraction and Reasoning Corpus) Prize competition in 2024, where accuracy rose from 33% to 55.5% on a private evaluation set. They explore two core solution paradigms—program synthesis (induction) and direct prediction ("transduction")—and how successful solutions combine both. Chollet emphasizes that human-like reasoning requires both fuzzy pattern matching (deep learning) and discrete, step-by-step symbolic processes. He also reveals his departure from Google to establish a new research lab focused on program synthesis, and provides insights into the next-generation ARC-2 benchmark.

SPONSOR MESSAGES:
***
CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments.
https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. Are you interested in working on reasoning, or getting involved in their events?

They are hosting an event in Zurich on January 9th with the ARChitects, join if you can.

Goto https://tufalabs.ai/
***

Read about the recent result on o3 with ARC here (Chollet knew about it at the time of the interview but wasn't allowed to say):
https://arcprize.org/blog/oai-o3-pub-...

TOC:
1. Introduction
[00:00:00] 1.1 Is o1 reasoning?

2. Interview Starts: ARC Competition 2024 Results and Evolution
[00:02:30] 2.1 ARC Prize 2024: Reflecting on the Narrative Shift Toward System 2
[00:05:33] 2.2 Comparing Private Leaderboard vs. Public Leaderboard Solutions
[00:08:21] 2.3 Two Winning Approaches: Deep Learning–Guided Program Synthesis and Test-Time Training

3. Transduction vs. Induction in ARC
[00:11:08] 3.1 Test-Time Training, Overfitting Concerns, and Developer-Aware Generalization
[00:14:39] 3.2 Gradient Descent Adaptation vs. Discrete Program Search

4. ARC-2 Development and Future Directions
[00:18:55] 4.1 Ensemble Methods, Benchmark Flaws, and the Need for ARC-2
[00:20:39] 4.2 Human-Level Performance Metrics and Private Test Sets
[00:24:48] 4.3 Task Diversity, Redundancy Issues, and Expanded Evaluation Methodology

5. Program Synthesis Approaches
[00:25:22] 5.1 Induction vs. Transduction: Different Solutions for Different Task Types
[00:27:15] 5.2 Challenges of Writing Algorithms for Perceptual vs. Algorithmic Tasks
[00:29:27] 5.3 Combining Induction and Transduction (Kevin Ellis's Paper)
[00:32:09] 5.4 Multi-View Insight and Overfitting Regulation

6. Latent Space and Graph-Based Synthesis
[00:33:21] 6.1 Clément Bonnet's Latent Program Search Approach
[00:35:14] 6.2 Decoding to Symbolic Form and Local Discrete Search
[00:36:19] 6.3 Graph of Operators vs. Token-by-Token Code Generation
[00:40:54] 6.4 Iterative Program Graph Modifications and Reusable Functions

7. Compute Efficiency and Lifelong Learning
[00:43:09] 7.1 Symbolic Process for Architecture Generation
[00:45:37] 7.2 Logarithmic Relationship of Compute and Accuracy
[00:47:24] 7.3 Learning New Building Blocks for Future Tasks

8. AI Reasoning and Future Development
[00:48:19] 8.1 Consciousness as a Self-Consistency Mechanism in Iterative Reasoning
[00:51:34] 8.2 Reconciling Symbolic and Connectionist Views
[00:55:17] 8.3 System 2 Reasoning Necessitates Awareness and Consistency
[00:58:09] 8.4 Novel Problem Solving, Abstraction, and Reusability

9. Program Synthesis and Research Lab
[01:00:57] 9.1 François Leaving Google to Focus on Program Synthesis
[01:04:59] 9.2 Democratizing Programming and Natural Language Instruction

10. Frontier Models and O1 Architecture
[01:09:42] 10.1 Search-Based Chain of Thought vs. Standard Forward Pass
[01:11:59] 10.2 o1's Natural Language Program Generation and Test-Time Compute Scaling
[01:14:39] 10.3 Logarithmic Gains with Deeper Search

11. ARC Evaluation and Human Intelligence
[01:17:59] 11.1 LLMs as Guessing Machines and Agent Reliability Issues
[01:20:06] 11.2 ARC-2 Human Testing and Correlation with g-Factor
[01:21:20] 11.3 Closing Remarks and Future Directions

SHOWNOTES PDF:
https://www.dropbox.com/scl/fi/epf2py...

François Chollet on OpenAI o-models and ARC

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

François Chollet: How We Get To AGI

François Chollet: How We Get To AGI

Richard Sutton – Father of RL thinks LLMs are a dead end

Richard Sutton – Father of RL thinks LLMs are a dead end

Исследователь Google показывает, что жизнь «возникает из кода» [Блез Агуэра и Аркас]

Исследователь Google показывает, что жизнь «возникает из кода» [Блез Агуэра и Аркас]

He Co-Invented the Transformer. Now: Continuous Thought Machines [Llion Jones / Luke Darlow]

He Co-Invented the Transformer. Now: Continuous Thought Machines [Llion Jones / Luke Darlow]

"I've updated my AGI timeline" | Francois Chollet + Dwarkesh Patel

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

The Real Reason Huge AI Models Actually Work [Prof. Andrew Wilson]

Новый код — Шон Гроув, OpenAI

Новый код — Шон Гроув, OpenAI

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

ARC-AGI-2 Overview With Francois Chollet

ARC-AGI-2 Overview With Francois Chollet

Andrew Ng Explores The Rise Of AI Agents And Agentic Reasoning | BUILD 2024 Keynote

Andrew Ng Explores The Rise Of AI Agents And Agentic Reasoning | BUILD 2024 Keynote

How Do AI Models Actually Think? [Dr. Laura Ruis]

How Do AI Models Actually Think? [Dr. Laura Ruis]

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Francois Chollet — Why the biggest AI models can't solve simple puzzles

Francois Chollet — Why the biggest AI models can't solve simple puzzles

Mindscape 280 | François Chollet on Deep Learning and the Meaning of Intelligence

Mindscape 280 | François Chollet on Deep Learning and the Meaning of Intelligence

Exploring Program Synthesis: Francois Chollet, Kevin Ellis, Zenna Tavares

Exploring Program Synthesis: Francois Chollet, Kevin Ellis, Zenna Tavares

Сооснователь OpenAI о Будущем и Настоящем в AI. Подкаст на Русском - Илья Суцкевер

Сооснователь OpenAI о Будущем и Настоящем в AI. Подкаст на Русском - Илья Суцкевер

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Geoffrey Hinton reveals the surprising truth about AI’s limits and potential

Geoffrey Hinton reveals the surprising truth about AI’s limits and potential

François Chollet - Creating Keras 3

François Chollet - Creating Keras 3

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]