Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

How does Segment Anything 2 (SAM 2) work? Paper and Network Architecture Explained!

Автор: Neural Breakdown with AVB

Загружено: 2024-08-02

Просмотров: 10457

Описание:

In this video, we will be discussing the SAM-2 paper, the latest META AI paper that tackles Promptable Visual Segmentation, the task of segmenting objects from any video!

Medium article: https://towardsdatascience.com/segmen...

Follow on Twitter: https://x.com/neural_avb
Members and Patrons will get access to the full write-up and powerpoint slides from this video!

Visit the Patreon link to see what is available:
  / neuralbreakdownwithavb  
#computervision #machinelearning #ai #educational

Relevant videos:
History of CNNs:    • The entire history of Computer Vision expl...  
Segment Anything Paper:    • Explaining the Segment Anything Model - Ne...  
Attention Series:    • Attention to Transformers from zero to hero!  

Links:
SAM-2 Page: https://ai.meta.com/blog/segment-anyt...
SAM-2 Paper: https://arxiv.org/pdf/2408.00714

How does Segment Anything 2 (SAM 2) work? Paper and Network Architecture Explained!

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#5754 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "OhxJkqD1vuE" ["related_video_title"]=> string(79) "Explaining the Segment Anything Model - Network architecture, Dataset, Training" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(25) "Neural Breakdown with AVB" } [1]=> object(stdClass)#5727 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "w8YQcEd77_o" ["related_video_title"]=> string(85) "Text to Image Diffusion AI Model from scratch - Explained one line of code at a time!" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(25) "Neural Breakdown with AVB" } [2]=> object(stdClass)#5752 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "OHh_SByRYmQ" ["related_video_title"]=> string(87) "Retrieval Augmented Generation - The Ultimate Guide to building powerful LLM pipelines!" ["posted_time"]=> string(27) "8 месяцев назад" ["channelName"]=> string(25) "Neural Breakdown with AVB" } [3]=> object(stdClass)#5759 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "eYhvJR4zFUM" ["related_video_title"]=> string(46) "Segment Anything - Model explanation with code" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(10) "Umar Jamil" } [4]=> object(stdClass)#5738 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "BDKncnlKjso" ["related_video_title"]=> string(82) "Segment Anything 2 By Meta AI | SAM2 | Architecture, Paper, and Coding Walkthrough" ["posted_time"]=> string(25) "2 недели назад" ["channelName"]=> string(15) "TheAILabsCanada" } [5]=> object(stdClass)#5756 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "UZDiGooFs54" ["related_video_title"]=> string(48) "The moment we stopped understanding AI [AlexNet]" ["posted_time"]=> string(28) "11 месяцев назад" ["channelName"]=> string(10) "Welch Labs" } [6]=> object(stdClass)#5751 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "_ROckQHGHsU" ["related_video_title"]=> string(77) "Complete DSPy Tutorial - Master LLM Prompt Programming in 8 amazing examples!" ["posted_time"]=> string(28) "10 месяцев назад" ["channelName"]=> string(25) "Neural Breakdown with AVB" } [7]=> object(stdClass)#5761 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "EzDsrEvdgNQ" ["related_video_title"]=> string(53) "If LLMs are text models, how do they generate images?" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(25) "Neural Breakdown with AVB" } [8]=> object(stdClass)#5737 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "BRQY9Bk-ISA" ["related_video_title"]=> string(65) "Segment Anything 2 (SAM 2) Ball Tracking and Real Time Code Demo!" ["posted_time"]=> string(28) "10 месяцев назад" ["channelName"]=> string(26) "Kevin Wood | Robotics & AI" } [9]=> object(stdClass)#5755 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "X2b_BD_LgwU" ["related_video_title"]=> string(59) "Segment Anything Model (SAM) - Foundational Model Deep Dive" ["posted_time"]=> string(27) "7 месяцев назад" ["channelName"]=> string(25) "Deep Learning with Yacine" } }
Explaining the Segment Anything Model - Network architecture, Dataset, Training

Explaining the Segment Anything Model - Network architecture, Dataset, Training

Text to Image Diffusion AI Model from scratch - Explained one line of code at a time!

Text to Image Diffusion AI Model from scratch - Explained one line of code at a time!

Retrieval Augmented Generation - The Ultimate Guide to building powerful LLM pipelines!

Retrieval Augmented Generation - The Ultimate Guide to building powerful LLM pipelines!

Segment Anything - Model explanation with code

Segment Anything - Model explanation with code

Segment Anything 2 By Meta AI | SAM2 | Architecture, Paper, and Coding Walkthrough

Segment Anything 2 By Meta AI | SAM2 | Architecture, Paper, and Coding Walkthrough

The moment we stopped understanding AI [AlexNet]

The moment we stopped understanding AI [AlexNet]

Complete DSPy Tutorial - Master LLM Prompt Programming in 8 amazing examples!

Complete DSPy Tutorial - Master LLM Prompt Programming in 8 amazing examples!

If LLMs are text models, how do they generate images?

If LLMs are text models, how do they generate images?

Segment Anything 2 (SAM 2) Ball Tracking and Real Time Code Demo!

Segment Anything 2 (SAM 2) Ball Tracking and Real Time Code Demo!

Segment Anything Model (SAM) - Foundational Model Deep Dive

Segment Anything Model (SAM) - Foundational Model Deep Dive

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]