Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Diffusion and Score-Based Generative Models

Автор: MITCBMM

Загружено: 2023-01-17

Просмотров: 106875

Описание:

Yang Song, Stanford University

Generating data with complex patterns, such as images, audio, and molecular structures, requires fitting very flexible statistical models to the data distribution. Even in the age of deep neural networks, building such models is difficult because they typically require an intractable normalization procedure to represent a probability distribution. To address this challenge, we consider modeling the vector field of gradients of the data distribution (known as the score function), which does not require normalization and therefore can take full advantage of the flexibility of deep neural networks. I will show how to (1) estimate the score function from data with flexible deep neural networks and efficient statistical methods, (2) generate new data using stochastic differential equations and Markov chain Monte Carlo, and even (3) evaluate probability values accurately as in a traditional statistical model. The resulting method, called score-based generative modeling or diffusion modeling, achieves record performance in applications including image synthesis, text-to-speech generation, time series prediction, and point cloud generation, challenging the long-time dominance of generative adversarial networks (GANs) on many of these tasks. Furthermore, score-based generative models are particularly suitable for Bayesian reasoning tasks such as solving ill-posed inverse problems, yielding superior performance on several tasks in medical image reconstruction.

Diffusion and Score-Based Generative Models

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

FindingFive: An online, non-profit platform for behavioral research

FindingFive: An online, non-profit platform for behavioral research

MIT 6.S184: Flow Matching and Diffusion Models - Lecture 1 - Generative AI with SDEs

MIT 6.S184: Flow Matching and Diffusion Models - Lecture 1 - Generative AI with SDEs

Language Models as World Models

Language Models as World Models

Jeffrey Fessler - An Introduction to Score Based Generative Models

Jeffrey Fessler - An Introduction to Score Based Generative Models

MIT 6.S184: Flow Matching and Diffusion Models - Lecture 01 - Generative AI with SDEs

MIT 6.S184: Flow Matching and Diffusion Models - Lecture 01 - Generative AI with SDEs

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Score Matching Explained - The Key Idea Behind Diffusion Models

Score Matching Explained - The Key Idea Behind Diffusion Models

But how do AI images and videos actually work? | Guest video by Welch Labs

But how do AI images and videos actually work? | Guest video by Welch Labs

Stanford CS236: Deep Generative Models I 2023 I Lecture 2 - Background

Stanford CS236: Deep Generative Models I 2023 I Lecture 2 - Background

Больше, чем генераторы изображений: наука решения проблем с использованием теории вероятностей | ...

Больше, чем генераторы изображений: наука решения проблем с использованием теории вероятностей | ...

Score-based Diffusion Models | Generative AI Animated

Score-based Diffusion Models | Generative AI Animated

Generative Modeling by Estimating Gradients of the Data Distribution - Stefano Ermon

Generative Modeling by Estimating Gradients of the Data Distribution - Stefano Ermon

Miika Aittala: Elucidating the Design Space of Diffusion-Based Generative Models

Miika Aittala: Elucidating the Design Space of Diffusion-Based Generative Models

The physics behind diffusion models

The physics behind diffusion models

Flow-Matching vs Diffusion Models explained side by side

Flow-Matching vs Diffusion Models explained side by side

How AI Image Generators Work (Stable Diffusion / Dall-E) - Computerphile

How AI Image Generators Work (Stable Diffusion / Dall-E) - Computerphile

Сопоставление потоков для генеративного моделирования (с пояснениями в статье)

Сопоставление потоков для генеративного моделирования (с пояснениями в статье)

Stanford CS236: Deep Generative Models I 2023 I Lecture 4 - Maximum Likelihood Learning

Stanford CS236: Deep Generative Models I 2023 I Lecture 4 - Maximum Likelihood Learning

Yann LeCun | Self-Supervised Learning, JEPA, World Models, and the future of AI

Yann LeCun | Self-Supervised Learning, JEPA, World Models, and the future of AI

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]