Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

I Became Fan Of Calculus After I Solved This Olympiad Level Physics Problem | Kalda 15

Автор:

Загружено: 2025-11-20

Просмотров: 2562

Описание:

In this Physics video in Hindi for the chapter : "Properties of Fluids" of Class 11, we discussed problem no. 15 from the handout 'Problems on Mechanics' by Jaan Kalda. This problem presents a fascinating situation involving a hemispherical container placed upside down on a perfectly smooth horizontal surface. Water is poured into the container through a small hole situated at what becomes the topmost point once the hemisphere is inverted. The key moment arrives when the container becomes completely full, and at that precise instant, water begins to leak from the narrow gap between the container’s rim and the table. The question asks us to determine the mass of the container, given the density of water and the radius of the hemispherical shape. This elegantly structured problem showcases the typical style of Jaan Kalda, where simple physical setups lead to deep insights rooted in the chapter "Properties of Fluids" and demand conceptual reasoning at the level expected in IIT-JEE Advanced, INPhO and IPhO preparation.

👇👇👇👇👇👇👇👇👇👇👇 Previous Video 👇👇👇👇👇👇👇

Kalda's Problem 15 : Solved With Only 1 Simple Concept
   • Can't Believe Kalda's Genius!!  Only 1 Sim...  

Kalda's Problem Series :
   • Jaan Kalda's "Mechanics" for Physics Olymp...  

☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️☝️

To solve this question, we analyze how water inside the hemisphere exerts pressure on every part of its curved inner surface. As more water is poured in, the resultant upward forces caused by fluid pressure start acting on the hemispherical walls. Because the container is resting on a smooth surface, it relies solely on its weight and the pressure distribution to maintain contact with the table. The moment water begins leaking identifies the instant at which the normal reaction at the edge becomes zero. By studying this condition of equilibrium, one can deduce the exact mass the container must have to counteract the upward force exerted by the water. This method combines principles of fluid statics and equilibrium, reflecting the intellectual flavor found across Jaan Kalda’s problems in the handout "Problems on Mechanics."

Definition 1 : Fluid Pressure.
Fluid pressure is the perpendicular force per unit area exerted by a fluid on any surface with which it is in contact. In this problem, fluid pressure plays a central role because the distribution of pressure over the curved surface of the hemispherical container generates upward forces that influence the container’s equilibrium.

Definition 2 : Buoyant Effect Without Immersion.
This definition refers to the upward resultant force generated inside a cavity due to fluid pressure acting on inner surfaces, even when the object itself is not submerged in the fluid. Here, the hemispherical container experiences an upward force arising from the water pushing against its interior surface.

Theorem 1 : Condition for Vertical Equilibrium.
This theorem states that for a body to remain in vertical equilibrium, the total upward forces acting on it must balance the total downward forces. This principle allows us to determine the exact moment at which the normal reaction at the rim becomes zero.

Theorem 2 : Hydrostatic Force Distribution Principle.
This principle states that the force exerted by a fluid at rest acts perpendicular to the containing surface and increases with depth. This concept helps us understand how the upward force resulting from water pressure varies across the curved surface of the hemisphere.

Throughout this discussion, focus remains firmly on the conceptual foundations of the chapter "Properties of Fluids," enabling students to appreciate how fluid pressure, reaction forces, and equilibrium conditions combine in complex yet beautifully structured problems. This problem by Jaan Kalda highlights the depth of reasoning that IIT-JEE Advanced aspirants and physics olympiad students must master. As we explore the logic step-by-step, the video reinforces essential principles linked to fluid mechanics while strengthening problem-solving intuition. This makes the content exceptionally valuable for learners targeting IIT-JEE Advanced and those using Jaan Kalda’s materials for higher-level physics training.
#jeeadvanced #jeeadvance #iitjee

I Became Fan Of Calculus After I Solved This Olympiad Level Physics Problem | Kalda 15

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Where Does

Where Does "Moment of Inertia" Come From?

How Krotov's Challenging Projectile Problem Becomes An Easy One  |  Krotov 1.10

How Krotov's Challenging Projectile Problem Becomes An Easy One | Krotov 1.10

Why Torque is Vector Product of Position and Force (𝜏 = r × F)

Why Torque is Vector Product of Position and Force (𝜏 = r × F)

Krotov's Challenge on Amazing Rotation Due to Friction  |  Krotov 1.50

Krotov's Challenge on Amazing Rotation Due to Friction | Krotov 1.50

Что такое дискриминант? это расстояние?

Что такое дискриминант? это расстояние?

How to lie using visual proofs

How to lie using visual proofs

What Is The True Meaning of

What Is The True Meaning of "Angular Acceleration" Formula (𝜶 = 𝝉/𝑰)

Как электростатические двигатели нарушают все правила

Как электростатические двигатели нарушают все правила

Can't Believe Kalda's Genius!!  Only 1 Simple Idea Made This Problem Look Simple  |  Problem 15

Can't Believe Kalda's Genius!! Only 1 Simple Idea Made This Problem Look Simple | Problem 15

Корень из двух – первая математическая трагедия // Vital Math

Корень из двух – первая математическая трагедия // Vital Math

Куда исчезает ёмкость MLCC? Эффект DC-Bias и старение керамики X7R

Куда исчезает ёмкость MLCC? Эффект DC-Bias и старение керамики X7R

МЫ СДЕЛАЛИ ЭТО!! Первый вольфрамовый ударный гайковерт!

МЫ СДЕЛАЛИ ЭТО!! Первый вольфрамовый ударный гайковерт!

Only For Genius : Jaan Kalda's Problem 1 - from Rotational Motion

Only For Genius : Jaan Kalda's Problem 1 - from Rotational Motion

This Surprising

This Surprising "Dual" Rotation Puzzled All of Us

Chernobyl Accident - Simulation only (no talk)

Chernobyl Accident - Simulation only (no talk)

БУДУЩЕЕ КОСМОНАВТИКИ: «ЛУНА-26» / ЛЮДИ НА ЛУНЕ / ЯДЕРНЫЙ БУКСИР «ЗЕВС» / «АНГАРА». Сурдин и Хохлов

БУДУЩЕЕ КОСМОНАВТИКИ: «ЛУНА-26» / ЛЮДИ НА ЛУНЕ / ЯДЕРНЫЙ БУКСИР «ЗЕВС» / «АНГАРА». Сурдин и Хохлов

This

This "Balancing" Problem From Krotov Taught Me Something I Did Not Know Until Now | Krotov 1.87

How Much It Can Push While Falling  |  Krotov 1.55

How Much It Can Push While Falling | Krotov 1.55

Krotov's Challenging Gift to Every IIT-JEE Aspirant : When Two Bodies Detach  |  Krotov 1.47

Krotov's Challenging Gift to Every IIT-JEE Aspirant : When Two Bodies Detach | Krotov 1.47

Why Almost Everyone is Wrong About Gravity

Why Almost Everyone is Wrong About Gravity

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]