Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

12 Concepts That Change How You See Probability Distributions

Автор: RiskByNumbers

Загружено: 2025-05-03

Просмотров: 35525

Описание:

There are many ways to describe a random variable (i.e., probability distribution). Some of these are fairly well known, such as the mean and variance of a distribution. Others are less so, such as skewness or kurtosis.

This video tries to synthesize 12 key concepts underlying the ways we describe random variables in just 10 minutes! This includes:

The central tendency of a distribution (median, mode, and mean)
Dispersion measures (variance, standard deviation, coefficient of variation)
Skewness and kurtosis to understand the distribution tails
An explanation of moments (raw, central, standardized) and how a core concept in physics is the basis of our descriptors in probability and statistics.

0:00 Introduction
1:01 Mode
1:31 Median
1:50 Raw Moments in Probability
2:50 Mean
3:26 Central Moments in Probability
3:43 Dispersion Measures: Variance, Standard Deviation, Coefficient of Variation
5:02 Standardized Random Variables
6:16 Standardized Moments in Probability
6:23 Skewness
8:24 Kurtosis
9:59 Conclusion

#probability #statistics #datascience #mean #variance #kurtosis #skewness #mathematics #education

Side Note: In the video, I comment that the moments in probability 'likely' come from physics. In reality, this relationship is quite strong (and goes back quite a bit in time). For example, this relationship is fairly clear in Karl Pearson's 1893 note "Asymmetrical Frequency Curves" with his discussion of the binomial distribution. In fact, he starts this note by stating, "...curves occurring in physical and biological measurements."

=====================

May 2, 2025: Thanks to all past viewers and followers of this channel for your patience! We just had a kid, which impacted my ability to produce timely content. I'll be spending the next few months building out the blog I initially created last year (riskbynumbers.org and riskbynumbers.com). Definitely feel free to provide comments or feedback around the type of content you'd like to learn more about by commenting on this video or reaching out to me directly.

======================

If this is your first video, welcome! I am a professor sharing educational resources around probability, statistics, optimization methods, algorithms, and programming to a broad audience.

Outside of YouTube, you can currently find me in Vancouver, Canada at the University of British Columbia.

Thank you, and I look forward to seeing you in future videos!

Email: RiskByNumbers@gmail.com.
LinkedIn:   / omar-swei  

12 Concepts That Change How You See Probability Distributions

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Распределения вероятностей наглядно объяснены визуально (PMF, PDF и CDF)

Распределения вероятностей наглядно объяснены визуально (PMF, PDF и CDF)

Why Averages Are (Almost) Always Wrong: Jensen's Inequality and the Flaw of Averages

Why Averages Are (Almost) Always Wrong: Jensen's Inequality and the Flaw of Averages

Covariance And Correlation Made Simple (and Why You Should Care) #SoME4

Covariance And Correlation Made Simple (and Why You Should Care) #SoME4

Statistics but you're missing data (The EM Algorithm) | #SoME4

Statistics but you're missing data (The EM Algorithm) | #SoME4

Секретное оружие для прогнозирования результатов: биномиальное распределение

Секретное оружие для прогнозирования результатов: биномиальное распределение

A problem so hard even Google relies on Random Chance

A problem so hard even Google relies on Random Chance

Алгоритм, который (в конечном итоге) произвел революцию в статистике — #SoMEpi

Алгоритм, который (в конечном итоге) произвел революцию в статистике — #SoMEpi

В чем разница между матрицами и тензорами?

В чем разница между матрицами и тензорами?

Convolutions | Why X+Y in probability is a beautiful mess

Convolutions | Why X+Y in probability is a beautiful mess

What is a Hilbert Space?

What is a Hilbert Space?

Make Smarter Financial Decisions With The Help of Natural Logarithms

Make Smarter Financial Decisions With The Help of Natural Logarithms

The Key Equation Behind Probability

The Key Equation Behind Probability

Вы никогда не видели подобных проверок гипотез.

Вы никогда не видели подобных проверок гипотез.

Важнейшая концепция теории вероятностей: теорема Байеса (часть 1)

Важнейшая концепция теории вероятностей: теорема Байеса (часть 1)

Как изучать распределения вероятностей

Как изучать распределения вероятностей

Аппроксиманты Паде

Аппроксиманты Паде

«Нас ждут тектонические сдвиги»: зачем Трамп создал кризис вокруг Гренландии

«Нас ждут тектонические сдвиги»: зачем Трамп создал кризис вокруг Гренландии

What is the Normal Distribution?

What is the Normal Distribution?

Самая большая головоломка в информатике: P против NP

Самая большая головоломка в информатике: P против NP

Normal Distributions Explained – With Real-World Examples

Normal Distributions Explained – With Real-World Examples

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com