Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Legendre Transformation | Get Hamiltonian from Lagrangian | Spring Mass, Harmonic Oscillator, Lect 2

Автор: Dr. Shane Ross

Загружено: 2021-06-22

Просмотров: 17549

Описание:

Lecture 2 of a course on Hamiltonian and nonlinear dynamics. The Legendre transformation is a general mathematical technique for transforming variables of a scalar function of multiple variables, using the partial derivatives as the new variables. We give a geometric interpretation. Then we use the Legendre transformation to derive Hamilton's canonical equations. Finally we consider a 1 degree of freedom system, the spring-mass example, a version of the harmonic oscillator.

► Missed the first lecture, introducing Hamiltonian systems?
   • Hamiltonian Mechanics Explained: Why Study...  

► Next: Hamiltonian System Properties | Classical Uncertainty Principle | 2D Fluid Streamfunctions
   • Hamiltonian System Properties | Phase Spac...  

► Dr. Shane Ross, Virginia Tech professor (Caltech PhD)
Instructor intro    • Professor Shane Ross Introduction  

► New lectures will be posted regularly
Subscribe https://is.gd/RossLabSubscribe​

► Follow me on Twitter
  / rossdynamicslab  

► A shorter, gentler introduction to Hamiltonian systems in 2D
   • Hamiltonian Systems - Nonlinear Systems wi...  

► See the entire playlist for this online course:
Advanced Dynamics - Hamiltonian Systems and Nonlinear Dynamics
https://is.gd/AdvancedDynamics

This course gives the student advanced theoretical and semi-analytical tools for analysis of dynamical systems, particularly mechanical systems (e.g., particles, rigid bodies, continuum systems). We discuss methods for writing equations of motion and the mathematical structure they represent at a more sophisticated level than previous engineering dynamics courses. We consider the sets of possible motion of mechanical systems (trajectories in phase space), which leads to topics of Hamiltonian systems (canonical and non-canonical), nonlinear dynamics, periodic & quasi-periodic orbits, driven nonlinear oscillators, resonance, stability / instability, invariant manifolds, energy surfaces, chaos, Poisson brackets, basins of attraction, etc.

► The entire class notes are in PDF form:
https://is.gd/AdvancedDynamicsNotes

► and in OneNote form:
https://1drv.ms/u/s!ApKh50Sn6rEDiRgCY...

►This course builds on prior knowledge of Lagrangian systems, which have their own lecture series, 'Analytical Dynamics'
https://is.gd/AnalyticalDynamics

► Continuation of this course on a related topic
Center manifolds, normal forms, and bifurcations
https://is.gd/CenterManifolds

► If you want a simple introductory course on Nonlinear Dynamics and Chaos, see:
https://is.gd/NonlinearDynamics

► References
The class will largely be based on the instructor’s notes.
In addition, references are:
Numerical Hamiltonian Problems by Sanz-Serna & Calvo
Analytical Dynamics by Hand & Finch
A Student’s Guide to Lagrangians and Hamiltonians by Hamill
Classical Mechanics with Calculus of Variations & Optimal Control: An Intuitive Introduction by Levi
Advanced Dynamics by Greenwood

Additional math texts that may also be useful are:
Nonlinear Differential Equations & Dynamical Systems by Verhulst
Introduction to Applied Nonlinear Dynamical Systems & Chaos by Wiggins
Differential Equations, Dynamical Systems, & Linear Algebra by Hirsch & Smale
Introduction to Mechanics & Symmetry by Marsden & Ratiu

Ross Dynamics Lab: http://chaotician.com​

Lecture 2021-06-22

action angle variables in classical mechanics quantum mechanics statistical physics thermal physics thermodynamics general relativity Jerrold Marsden Gibbs free energy quasiperiodic online course principle of least action cosmology universe quarks William Rowan Hamilton Hamilton-Jacobi theory three-body problem orbital mechanics incompressibility integral invariants of Poincare streamfunction fluids

#Hamiltonian #Legendre #LegendreTransformation #NonlinearDynamics #DynamicalSystems #Lagrangian #mathematics #Dynamics #Chaos #ChaoticDynamics #Canonical #Poisson #OptimalControl #Poincare #Lindstedt #Mathieu #ChaosTheory #HenonMap #HenonAttractor #HarmonicOscillator #Legendre #Universality #Hamilton #Jacobi #ThreeBody #Involutive #PeriodDoubling #Bifurcation #DifferenceEquation #PoincareMap #chaos #ChaosTheory #Lyapunov #Oscillators #HopfBifurcation #NonlinearOscillators #LimitCycle #Oscillations #nullclines #VectorFields #topology #geometry #IndexTheory #EnergyConservation #Streamfunction #Streamlines #Vortex #SkewGradient #Gradient #FixedPoint #DifferentialEquations #SaddleNode #Eigenvalues #HyperbolicPoints #NonHyperbolicPoint #CriticalPoint #PitchforkBifurcation #StructuralStability #DifferentialEquations #dimensions #PhaseSpace #PhasePortrait #PhasePlane #Strogatz #Lorenz #VectorField #GraphicalMethod #FixedPoints #EquilibriumPoints #Stability #StablePoint #UnstablePoint #Stability #LinearStability #LinearStabilityAnalysis #StabilityAnalysis #VectorField #TwoDimensional #Functions #GradientSystem #GradientVectorField #Cylinder #Pendulum #Newton #LawOfMotion #dynamics ​#mathematicians #maths #mathstudents #mathematician #mathfacts #mathskills #mathtricks #KAMtori #thermodynamics #Boltzmann

Legendre Transformation | Get Hamiltonian from Lagrangian | Spring Mass, Harmonic Oscillator, Lect 2

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Hamiltonian System Properties | Phase Space, Incompressibility, Classical Uncertainty

Hamiltonian System Properties | Phase Space, Incompressibility, Classical Uncertainty

Lagrangian vs Hamiltonian Mechanics

Lagrangian vs Hamiltonian Mechanics

Hamiltonian Mechanics Explained: Why Study Hamiltonian Systems? | Lecture 1

Hamiltonian Mechanics Explained: Why Study Hamiltonian Systems? | Lecture 1

A Simple yet Powerful Math Trick

A Simple yet Powerful Math Trick

Как выглядит график функции x^a, если a не является целым числом? Необычный взгляд на знакомые фу...

Как выглядит график функции x^a, если a не является целым числом? Необычный взгляд на знакомые фу...

Simplifying Physics with Poisson Brackets - Let's Learn Classical Physics - Goldstein Chapter 9

Simplifying Physics with Poisson Brackets - Let's Learn Classical Physics - Goldstein Chapter 9

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

The Most Beautiful Result in Classical Mechanics

The Most Beautiful Result in Classical Mechanics

Legendre Transformation explained (with Animation)

Legendre Transformation explained (with Animation)

Hamiltonian mechanics in 12 equivalent characterizations

Hamiltonian mechanics in 12 equivalent characterizations

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

The Legendre transformation

The Legendre transformation

Блок на наклонной поверхности: ньютоновские, лагранжевы и гамильтоновские решения

Блок на наклонной поверхности: ньютоновские, лагранжевы и гамильтоновские решения

Deriving Hamilton's Principle

Deriving Hamilton's Principle

Лагранжева механика: когда теоретическая физика стала реальной

Лагранжева механика: когда теоретическая физика стала реальной

A quick introduction to Legendre Transformations, by prof. V Balakrishnan

A quick introduction to Legendre Transformations, by prof. V Balakrishnan

Newtonian/Lagrangian/Hamiltonian mechanics are not equivalent

Newtonian/Lagrangian/Hamiltonian mechanics are not equivalent

Dirac's belt trick, Topology,  and Spin ½ particles

Dirac's belt trick, Topology, and Spin ½ particles

Legendre transformation in mechanics

Legendre transformation in mechanics

Euler-Lagrange equation: derivation and application

Euler-Lagrange equation: derivation and application

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]