Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Sentiment Analysis on ANY Length of Text With Transformers (Python)

Автор: James Briggs

Загружено: 2021-03-10

Просмотров: 9505

Описание:

The de-facto standard in many natural language processing (NLP) tasks nowadays is to use a transformer. Text generation? Transformer. Question-and-answering? Transformer. Language classification? Transformer!

However, one of the problems with many of these models (a problem that is not just restricted to transformer models) is that we cannot process long pieces of text.

Almost every article I write on Medium contains 1000+ words, which, when tokenized for a transformer model like BERT, will produce 1000+ tokens. BERT (and many other transformer models) will consume 512 tokens max - truncating anything beyond this length.

Although I think you may struggle to find value in processing my Medium articles, the same applies to many useful data sources - like news articles or Reddit posts.

We will take a look at how we can work around this limitation. In this article, we will find the sentiment for long posts from the /r/investing subreddit. This video will cover:

High-Level Approach
Getting Started
Data
Initialization
Tokenization
Preparing The Chunks
Split
CLS and SEP
Padding
Reshaping For BERT
Making Predictions

🤖 70% Discount on the NLP With Transformers in Python course:
https://bit.ly/3DFvvY5

Here's a link to the Medium article:
https://towardsdatascience.com/how-to...

And a free access link if you don't have Medium membership:
https://towardsdatascience.com/how-to...

Sentiment Analysis on ANY Length of Text With Transformers (Python)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(0) { }

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]