Scalar Surface Integral ∫∫ x^2yz dS where S is part of the plane z=1+2x+3y
Автор: Jonathan Walters
Загружено: 2019-10-19
Просмотров: 10006
Scalar Surface Integral ∫∫ x^2yz dS where S is part of the plane z=1+2x+3y above the rectangle [0,3] x [0,2].
The first thing to do for any surface integral is find the parameterization.
Then if it's a scalar surface integral we take the magnitude of the normal vector |s_u x s_v|. This cross product acts like our jacobian for the change of variables.
In this problem our bounds are already given, but often we must find the bounds for the parameters next.
Lastly we substitute in our parameterization to a function, multiply by our Jacobian, then integrate.
As always, if you have any questions, let me know!
Thanks for watching!
-dr. dub
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: