Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

VITAMIN-E: VIsual Tracking And MappINg with Extremely Dense Feature Points (CVPR 2019)

Автор: Smart Mobility Research Team@AIST

Загружено: 2019-04-02

Просмотров: 13748

Описание:

CVPR 2019 Paper ( PAPER AVAILABLE AT: http://arxiv.org/abs/1904.10324 )
Authors: Masashi Yokozuka, Shuji Oishi, Thompson Simon, Atsuhiko Banno.
Affiliation: Robot Innovation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Japan.

In this paper, we propose a novel indirect monocular SLAM algorithm called "VITAMIN-E," which is highly accurate and robust as a result of tracking extremely dense feature points. Typical indirect methods have difficulty in reconstructing dense geometry because of their careful feature point selection for accurate matching. Unlike conventional methods, the proposed method processes an enormous number of feature points by tracking the local extrema of curvature informed by dominant flow estimation. Because this may lead to high computational cost during bundle adjustment, we propose a novel optimization technique, the "subspace Gauss-Newton method", that significantly improves the computational efficiency of bundle adjustment by partially updating the variables. We concurrently generate meshes from the reconstructed points and merge them for an entire 3D model. Experimental results on the SLAM benchmark dataset EuRoC demonstrated that the proposed method outperformed state-of-the-art SLAM methods such as DSO, ORB-SLAM, and LSD-SLAM, both in terms of accuracy and robustness in trajectory estimation. The proposed method simultaneously generated significantly detailed 3D geometry from the dense feature points in real time using only a CPU.


-----
Mobile Robotics Research Team (MR2T) @ AIST
Twitter:   / mr2t_aist  
Webpage: https://unit.aist.go.jp/hcmrc/mr-rt/i...

VITAMIN-E: VIsual Tracking And MappINg with Extremely Dense Feature Points (CVPR 2019)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

DTAM: Dense Tracking and Mapping in Real-Time

DTAM: Dense Tracking and Mapping in Real-Time

DSO: Direct Sparse Odometry

DSO: Direct Sparse Odometry

Real-time Odometry-less 3D LiDAR SLAM with Generalized ICP and Pose-Graph Optimization (Long Ver.)

Real-time Odometry-less 3D LiDAR SLAM with Generalized ICP and Pose-Graph Optimization (Long Ver.)

DeepFactors: Real-Time Probabilistic Dense Monocular SLAM

DeepFactors: Real-Time Probabilistic Dense Monocular SLAM

Орешник: новые и старые сведения

Орешник: новые и старые сведения

Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic SLAM

Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic SLAM

Learning to Solve Nonlinear Least Squares for Dense Tracking and Mapping

Learning to Solve Nonlinear Least Squares for Dense Tracking and Mapping

Этот ракетный двигатель разработан не людьми

Этот ракетный двигатель разработан не людьми

Эфир - Самое ЛЕТУЧЕЕ Вещество на Земле!

Эфир - Самое ЛЕТУЧЕЕ Вещество на Земле!

Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM

Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM

Open-source SLAM with Intel RealSense depth cameras

Open-source SLAM with Intel RealSense depth cameras

Multi-Level Mapping: Real-time Dense Monocular SLAM

Multi-Level Mapping: Real-time Dense Monocular SLAM

ПОЛНЫЙ ОТРЫВ ОТ РЕАЛЬНОСТИ. Доклады Герасимова — уже безумие. Виртуальная реальность Путина

ПОЛНЫЙ ОТРЫВ ОТ РЕАЛЬНОСТИ. Доклады Герасимова — уже безумие. Виртуальная реальность Путина

LiTAMIN2: Ultra Light LiDAR-based SLAM (ICRA 2021)

LiTAMIN2: Ultra Light LiDAR-based SLAM (ICRA 2021)

SVO 2.0: Semi-Direct Visual Odometry for Monocular and Multi-Camera Systems

SVO 2.0: Semi-Direct Visual Odometry for Monocular and Multi-Camera Systems

ROVIO: Robust Visual Inertial Odometry

ROVIO: Robust Visual Inertial Odometry

ICRA 2021 - Robust Place Recognition using an Imaging Lidar

ICRA 2021 - Robust Place Recognition using an Imaging Lidar

25 Запрещенных Гаджетов, Которые Вы Можете Купить Онлайн

25 Запрещенных Гаджетов, Которые Вы Можете Купить Онлайн

[2019 July] Real-time Vision-based Depth Reconstruction with NVidia Jetson for Monocular SLAM

[2019 July] Real-time Vision-based Depth Reconstruction with NVidia Jetson for Monocular SLAM

Large-Scale Direct SLAM  with Stereo Cameras (IROS '15)

Large-Scale Direct SLAM with Stereo Cameras (IROS '15)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com