Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Mastering Standard Error of Difference (of Mean & Proportion) Between Groups

Автор:

Загружено: 2025-06-13

Просмотров: 358

Описание:

Understanding Standard Error of Difference Between Two Means and Proportions

In this episode, we delve into the statistical concepts of standard error of difference between two means and two proportions. We review formulas for calculating these errors and explore how these calculations differentiate between significant differences and those due to chance. Examples include evaluating the effect of a drug on mice and comparing the efficacy of two whooping cough vaccines. This detailed explanation builds on previous discussions of standard error and confidence intervals.

00:00 Introduction to Standard Error of Difference
01:20 Understanding Standard Error of Difference Between Two Means
02:17 Calculating Standard Error of Difference Between Two Proportions
03:59 Example Problem: Standard Error of Difference Between Two Means
06:52 Example Problem: Standard Error of Difference Between Two Proportions
10:57 Conclusion and Summary

Standard Error of Difference (of Mean & Proportion) Between Groups
The Standard Error of the Difference (SED) is a crucial statistical measure used when you want to compare a specific statistic (like a mean or a proportion) between two different groups or conditions. It quantifies the expected variability of the difference you observe between your sample statistics, if you were to repeat the sampling process many times.

In simpler terms, it tells you how much the observed difference between your two groups is likely to "bounce around" due to random sampling variability, allowing you to gauge the precision of that difference. A smaller SED indicates that your observed difference is a more precise estimate of the true difference in the underlying populations.

The concept is fundamental to inferential statistics, as it's a key component in:

Constructing Confidence Intervals for the Difference: This gives you a range of plausible values for the true difference in the population parameters (e.g., the true difference in means, or the true difference in proportions).
Performing Hypothesis Tests: It's used to calculate test statistics (like the t-statistic or z-statistic) which help determine if the observed difference between groups is statistically significant, or if it could reasonably have occurred by chance.
Key Types of Standard Error of the Difference:
Standard Error of the Difference of Means:

Used when comparing the average (mean) values of a continuous variable between two independent groups (e.g., comparing the average blood pressure of a treatment group vs. a control group).

For paired samples (e.g., before-and-after measurements on the same individuals), the formula is different and involves the standard deviation of the differences between the paired observations.
Standard Error of the Difference of Proportions:

Used when comparing the proportions or percentages of an event or characteristic between two independent groups (e.g., comparing the proportion of patients who recovered in two different treatment arms).

When performing hypothesis tests where you assume no difference between the population proportions (null hypothesis), a "pooled proportion" is often used in the formula.
In essence, the standard error of the difference provides a measure of the uncertainty associated with a comparison between two groups, allowing researchers to make more informed and statistically sound conclusions.

Mastering Standard Error of Difference (of Mean & Proportion) Between Groups

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Дердл-Дор и бухта Лалворт. #лондон #британия #лалвортков #дердлдор #борнмут #докторрокбритто

Дердл-Дор и бухта Лалворт. #лондон #британия #лалвортков #дердлдор #борнмут #докторрокбритто

1 Dual Nature NCERT Board AR Video 1

1 Dual Nature NCERT Board AR Video 1

Sample Size Formulas: A Must-Know for Exams and Research. #spm #statistics #psm #bcbr #research #1

Sample Size Formulas: A Must-Know for Exams and Research. #spm #statistics #psm #bcbr #research #1

Проверка гипотез ОБЪЯСНЕНА

Проверка гипотез ОБЪЯСНЕНА

Стандартное отклонение (простое объяснение)

Стандартное отклонение (простое объяснение)

Simplifying Statistics: Coefficient of Variation, Standard Error, & Confidence Intervals. #spm #psm

Simplifying Statistics: Coefficient of Variation, Standard Error, & Confidence Intervals. #spm #psm

ЗАНИМАТЕЛЬНАЯ ВЕРОЯТНОСТЬ. ЛЕКЦИЯ 21.11.2025 В РАМКАХ ЛЕКТОРИЯ ВДНХ

ЗАНИМАТЕЛЬНАЯ ВЕРОЯТНОСТЬ. ЛЕКЦИЯ 21.11.2025 В РАМКАХ ЛЕКТОРИЯ ВДНХ

Statistics

Statistics

Нормальное распределение ОБЪЯСНЕНО с примерами

Нормальное распределение ОБЪЯСНЕНО с примерами

Доверительный интервал [Простое объяснение]

Доверительный интервал [Простое объяснение]

How to estimate the population from the census data? Population estimation. #howto #population #1

How to estimate the population from the census data? Population estimation. #howto #population #1

Но почему площадь поверхности сферы в четыре раза больше ее тени?

Но почему площадь поверхности сферы в четыре раза больше ее тени?

Понимание Z-преобразования

Понимание Z-преобразования

Нормальное распределение и задачи теории вероятностей

Нормальное распределение и задачи теории вероятностей

Z-статистика против T-статистики: объяснение за 4 минуты

Z-статистика против T-статистики: объяснение за 4 минуты

ШЕДЕВР всей ЖИЗНИ!!! Ян Кшиштоф Дуда - Александр Гельман

ШЕДЕВР всей ЖИЗНИ!!! Ян Кшиштоф Дуда - Александр Гельман

Введение в статистику и анализ данных

Введение в статистику и анализ данных

Психология Людей, Которые Прошли Через Слишком Многое | 6 Черт Сильных Личностей

Психология Людей, Которые Прошли Через Слишком Многое | 6 Черт Сильных Личностей

Распределения выборки (7.2)

Распределения выборки (7.2)

Маска подсети — пояснения

Маска подсети — пояснения

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com