Machine Learning Vtu Important Questions| BCM601
Lecture 83: ARTIFICIAL NEURAL NETWORKS - Quick revision |BCS602|BCM601|BDS602|BAI602
Lecture 82: Reinforcement Learning - Part2|VTU|BCM601|BDS602|BCS602|BAI602|Module 5
Lecture 81: Reinforcement Learning|Part 1|Module 5|VTU|BCS602|BCM601|BDS602|BAI602
Lecture 80: DBSCAN clusteting|Density based clustering|Module 5|bcm601|bds602|bcs602|bai602|VTU|
Lecture 79: Numerical on K-means algorithm with algorithm |BCM601|BDS602|BCS6-2|BAI60k-means|VTU
Lecture 67: Naive Bayes theorem & problem|BCM601|BDS602|BCS602|BAI602
Lecture 68: NAÏVE BAYES THEOREM | Zero probability error| Laplacian correction| BCM601|BDS602|BCS602
Lecture 55: Problem on Linear regression|machinelearning|VTU|bds602|bcs602|bcm601|bai601
Lecture 53: Math behind Linear regression model |Module 3|VTU|bcm601|bds602|bcs602|bai602
Lecture 52: Regression analysis|Module 3|BCS602|BCM601|BAI602|BDS602|VTU|Machine Learning
Lecture 49: K-Nearest Neighbor (KNN) Algorithm|BCS602|BDS602|BCM601|BAI602|VTU|Module 3
Lecture 48: Candidate elimination Problem |BCS602|BDS602|BAI602|BCM601
Lecture 47: FIND S-ALGORITHM IN MACHINE LEARNING|BCM601|BDS602|BCS602|BAI602|PROBLEM SOLVING
Lecture 46:Specific To General hypothesis|Problem Solving|BCM601|BDS602|BAI602|BCS602|ML
Lecture 44: Concept Learning|BCM601|BDS602|BCD602|BAI602|MachineLearning|VTU
Lecture 42: What is Computation learning theory(CoLT)| BDS602|BCM601|BCS602|BAI602|PAC|VC dimension
Lecture 42: Classical vs adaptive ML systems|Learning types|bcm601|bds602|bai602|bcs602
Lecture 40: Problem on Singular Value Decomposition SV|BCM601|BDS602|BCS602|BAI602|VTU|ML
Lecture 38: Linear Discriminant Analysis LDA|BCM601|BAI602|BCS602|BDS602|Machine Learning|VTU