Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Infinite Sums | Geometric Series | Explained Visually

Автор: Think Twice

Загружено: 2018-02-01

Просмотров: 137215

Описание:

Geometric series are probably one of the first infinite sums that most of us encountered in high-school. When I first heard of an infinite sum(two or three years ago), I was really amazed that some of them would equal to a finite number. It seemed very strange that even if I keep adding numbers forever I would get a finite answer. At school I was just taught to plug the numbers into the formula, without fully understanding why or how it works.

In this video I go over some examples of geometric series and how we can get some insight on why it works by using visuals.

Thanks for watching~

P.S.
I will be moving to China for 5 months tomorrow, so I'm not sure if I will have an access to YouTube there, due to many sites being blocked by the government.

_________________________________________________________________

Support my animations on:

  / think_twice  

_________________________________________________________________


Any further questions or ideas:

Email - [email protected]

Twitter -   / thinktwice2580  

_________________________________________________________________


Programs used:

Cinema 4D

Adobe Premiere Pro

_________________________________________________________________

MUSIC:

A time of wonder

   • Видео  

Infinite Sums | Geometric Series | Explained Visually

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#4649 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "SJWi7hM0Hbs" ["related_video_title"]=> string(70) "Beautiful visualization | Sum of first n Hex numbers = n^3 | animation" ["posted_time"]=> string(19) "7 лет назад" ["channelName"]=> string(11) "Think Twice" } [1]=> object(stdClass)#4622 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "JteQEN1XPyc" ["related_video_title"]=> string(99) "Beautiful Geometry behind Geometric Series (8 dissection visual proofs without words) #math #series" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(26) "Mathematical Visual Proofs" } [2]=> object(stdClass)#4647 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "UJ7_axynKeY" ["related_video_title"]=> string(28) "When Geometry Meets Infinity" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(14) "Digital Genius" } [3]=> object(stdClass)#4654 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "jxRqRLMliPc" ["related_video_title"]=> string(47) "Finding The Sum of an Infinite Geometric Series" ["posted_time"]=> string(19) "7 лет назад" ["channelName"]=> string(27) "The Organic Chemistry Tutor" } [4]=> object(stdClass)#4633 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "wWXsajE-L_o" ["related_video_title"]=> string(65) "The Fermat Point of a Triangle | Geometric construction + Proof |" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> string(11) "Think Twice" } [5]=> object(stdClass)#4651 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "XlQOipIVFPk" ["related_video_title"]=> string(68) "Cutting a Möbius strip in half (and more) | Animated Topology |" ["posted_time"]=> string(19) "7 лет назад" ["channelName"]=> string(11) "Think Twice" } [6]=> object(stdClass)#4646 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "EK32jo7i5LQ" ["related_video_title"]=> string(145) "Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> string(11) "3Blue1Brown" } [7]=> object(stdClass)#4656 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "eQEU7ooDSys" ["related_video_title"]=> string(51) "Евстафьев 16.06.2025 - Всё готово" ["posted_time"]=> string(23) "9 часов назад" ["channelName"]=> string(12) "Ранний" } [8]=> object(stdClass)#4632 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "RnHC1XiNWS8" ["related_video_title"]=> string(94) "Венедиктов – страх, Симоньян, компромиссы / вДудь" ["posted_time"]=> string(21) "5 дней назад" ["channelName"]=> string(10) "вДудь" } [9]=> object(stdClass)#4650 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "hB2F9lyr2_k" ["related_video_title"]=> string(51) "A Visual Attempt at 1 + 2 + 3 + 4 + 5 + ... = -1/12" ["posted_time"]=> string(28) "10 месяцев назад" ["channelName"]=> string(26) "Mathematical Visual Proofs" } }
Beautiful visualization | Sum of first n Hex numbers = n^3 | animation

Beautiful visualization | Sum of first n Hex numbers = n^3 | animation

Beautiful Geometry behind Geometric Series (8 dissection visual proofs without words) #math #series

Beautiful Geometry behind Geometric Series (8 dissection visual proofs without words) #math #series

When Geometry Meets Infinity

When Geometry Meets Infinity

Finding The Sum of an Infinite Geometric Series

Finding The Sum of an Infinite Geometric Series

The Fermat Point of a Triangle | Geometric construction + Proof |

The Fermat Point of a Triangle | Geometric construction + Proof |

Cutting a Möbius strip in half (and more) | Animated Topology |

Cutting a Möbius strip in half (and more) | Animated Topology |

Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации

Почему простые числа образуют эти спирали? | Теорема Дирихле и пи-аппроксимации

Евстафьев 16.06.2025 - Всё готово

Евстафьев 16.06.2025 - Всё готово

Венедиктов – страх, Симоньян, компромиссы / вДудь

Венедиктов – страх, Симоньян, компромиссы / вДудь

A Visual Attempt at 1 + 2 + 3 + 4 + 5 + ... = -1/12

A Visual Attempt at 1 + 2 + 3 + 4 + 5 + ... = -1/12

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]