NumPy: The Secret Weapon for Your Data Science Career
Автор: skill learning hub
Загружено: 2026-01-02
Просмотров: 38
NumPy: The Secret Weapon for Your Data Science Career You’ll Learn
In this video, we cover the most important NumPy array operations used in Data Science & Machine Learning:
✅ Broadcasting – Operations on different shaped arrays
✅ Boolean Indexing – Filtering data using conditions
✅ Reshape – Changing array dimensions
✅ Stack & Split – Combining and dividing arrays
✅ Real-life practical examples
NumPy: The Secret Weapon for Your Data Science Career
⏱️ TIMESTAMPS (Watch in Order)
00:00 – Welcome & Overview
00:17 – 📡 Broadcasting (with examples)
03:55 – 🎭 Boolean Indexing
06:15 – 🔄 Reshaping Arrays
08:00 – 📦 Stack & Split Operations
11:27 – 🚀 Projects Overview
🧠 Real-Life Example
Student marks analysis using NumPy:
Average marks per student
Average marks per subject
Practical data handling for ML
📚 Complete NumPy Series
▶️ Day 1: Basics & Array Properties
• NumPy Tutorial Day 2 | Arrays, Indexing & ...
▶️ Day 2: Indexing & Slicing
• NumPy Tutorial Day 1 | NumPy Basics for Be...
▶️ Day 3: Math, Stats, Axis, Sorting & Random
• 🔥 NumPy Day 3 COMPLETE: Math, Stats, Axis,...
NumPy: The Secret Weapon for Your Data Science Career
🎯 Who Should Watch This?
✔ Data Science Beginners
✔ Python & NumPy Learners
✔ Machine Learning Aspirants
🚀 What’s Next?
👉 3 Real-World NumPy Projects are coming next!
Comment below and tell me 👇
Which project should I create FIRST? (1, 2, or 3)
👍 Like if NumPy finally makes sense
🔔 Subscribe & turn on notifications
💬 Comment: “Which topic helped you most?”
👥 Share with a friend learning Data Science
🔗 Connect With Me
🔹 LinkedIn: / vishalvermacgc
🔹 YouTube: / @skilllearninghub
🔹 ML Playlist:
• Complete Machine Learning Roadmap in Hindi...
🔹 WhatsApp Channel:
https://whatsapp.com/channel/0029VbC8...
🔖 Hashtags
#NumPy #Python #DataScience #MachineLearning #AI #Broadcasting #BooleanIndexing #Reshape #NumPyTutorial
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: