Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Polynomials and sequence spaces | Geometric Linear Algebra 22 | NJ Wildberger

Автор: Insights into Mathematics

Загружено: 2011-03-30

Просмотров: 12376

Описание:

Polynomials can be interpreted as functions, and also as sequences. In this lecture we move to considering sequences. Aside from the familiar powers, we introduce also falling and rising powers, using the notation of D. Knuth. These have an intimate connection to forward and backward difference operators. We look at some particular sequences, such as the square pyramidal numbers, from the view of this `difference calculus'.

CONTENT SUMMARY: pg 1: @00:08
polynomials and sequence spaces; remark about expressions versus objects @03:27 ;
pg 2: @04:24 Some polynomials and associated sequences; Ordinary powers; Factorial powers (D. Knuth);
pg 3: @10:34 Lowering (factorial) power; Raising (factorial) power; connection between raising and lowering; all polynomials @13:28;
pg 4: @13:52 Why we want these raising and lowering factorial powers; general sequences; On-line encyclopedia of integer sequences (N.Sloane); 'square pyramidal numbers'; Table of forward differences;
pg 5: @19:23 Forward and backward differences; forward/backward difference operators on polynomials; examples: operator on 1 @23:07;
pg 6: @23:38 Forward and backward differences on a sequence; difference below/above convention;
pg 7: @27:21 Forward and backward Differences of lowering powers; calculus reference @29:37;
pg 8: @31:27 Forward and backward Differences of raising powers; operators act like derivative @34:45 ; n equals 0 raising and lowering defined;
pg 9: @36:17 Introduction of some new basis; standard/power basis, lowering power basis, raising power basis; proven to be bases;
pg 10: @39:23 WLA22_pg10_Theorem (Newton); proof;
pg 10b: @44:40 Lesson: it helps to start at n=0; example (square pyramidal numbers);an important formula @47:47;
pg 11: @50:00 formula of Archimedes; taking forward distances compared to summation @52:46
pg 12: @53:20 a simpler formula; example: sum of cubes;
pg 13: @57:38 exercises 22.1-4;
pg 14: @59:06 exercise 22.5; find the next term; closing remarks @59:50;

Video Chapters:
00:00 Introduction
4:23 Some polynomials and associated sequences
10:32 Lowering (factorial) powers
19:22 Forward and backward differences
27:20 Differences of lowering and raising powers are easy to compute!
36:16 Factorial power bases
39:23 A theorem of Newton
49:58 A formula of Archimedes
53:20 A formula for sum of cubes
57:38 Exercises 22.1-4;
************************
Screenshot PDFs for my videos are available at the website http://wildegg.com. These give you a concise overview of the contents of the lectures for various Playlists: great for review, study and summary.

My research papers can be found at my Research Gate page, at https://www.researchgate.net/profile/...

My blog is at http://njwildberger.com/, where I will discuss lots of foundational issues, along with other things.

Online courses will be developed at openlearning.com. The first one, already underway is Algebraic Calculus One at https://www.openlearning.com/courses/... Please join us for an exciting new approach to one of mathematics' most important subjects!

If you would like to support these new initiatives for mathematics education and research, please consider becoming a Patron of this Channel at   / njwildberger   Your support would be much appreciated.

Polynomials and sequence spaces | Geometric Linear Algebra 22 | NJ Wildberger

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Stirling numbers and Pascal triangles | Geometric Linear Algebra 23 | NJ Wildberger

Stirling numbers and Pascal triangles | Geometric Linear Algebra 23 | NJ Wildberger

Bases of polynomial spaces | Geometric Linear Algebra 20 | NJ Wildberger

Bases of polynomial spaces | Geometric Linear Algebra 20 | NJ Wildberger

More bases of polynomial spaces | Geometric Linear Algebra 21 | NJ Wildberger

More bases of polynomial spaces | Geometric Linear Algebra 21 | NJ Wildberger

Аппроксиманты Паде

Аппроксиманты Паде

Short Course in Topology of Metric Spaces (in Real Analysis)

Short Course in Topology of Metric Spaces (in Real Analysis)

Polynomial equations (a) | Math History | NJ Wildberger

Polynomial equations (a) | Math History | NJ Wildberger

Суть линейной алгебры: #14. Собственные векторы и собственные значения [3Blue1Brown]

Суть линейной алгебры: #14. Собственные векторы и собственные значения [3Blue1Brown]

Суть линейной алгебры: #7. Обратные матрицы, пространство столбцов и нуль-пространство

Суть линейной алгебры: #7. Обратные матрицы, пространство столбцов и нуль-пространство

Galois theory I  | Math History | NJ Wildberger

Galois theory I | Math History | NJ Wildberger

Что такое квантовая теория

Что такое квантовая теория

Relativistic dot products and complex numbers | Geometric Linear Algebra B 40 | NJ Wildberger

Relativistic dot products and complex numbers | Geometric Linear Algebra B 40 | NJ Wildberger

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

Теренс Тао о том, как Григорий Перельман решил гипотезу Пуанкаре | Лекс Фридман

WildLinAlg1: Introduction to Linear Algebra

WildLinAlg1: Introduction to Linear Algebra

Geometry with linear algebra | Geometric Linear Algebra 27 | NJ Wildberger

Geometry with linear algebra | Geometric Linear Algebra 27 | NJ Wildberger

Linear algebra with polynomials | Geometric Linear Algebra 19 | NJ Wildberger

Linear algebra with polynomials | Geometric Linear Algebra 19 | NJ Wildberger

Applications of 2x2 matrices | Geometric Linear Algebra 6 | NJ Wildberger

Applications of 2x2 matrices | Geometric Linear Algebra 6 | NJ Wildberger

ЧАСЫ С ТОЧНОСТЬЮ ДО МИКРОНА. Откуда в XVIII веке БЕЗ СТАНКОВ взялись эти механизмы?

ЧАСЫ С ТОЧНОСТЬЮ ДО МИКРОНА. Откуда в XVIII веке БЕЗ СТАНКОВ взялись эти механизмы?

Change of coordinates and determinants | Geometric Linear Algebra 5 | NJ Wildberger

Change of coordinates and determinants | Geometric Linear Algebra 5 | NJ Wildberger

Почему Питер Шольце — математик, каких бывает раз в поколение?

Почему Питер Шольце — математик, каких бывает раз в поколение?

Он проделал путь от изучения греческого языка до получения самой большой награды в математике.

Он проделал путь от изучения греческого языка до получения самой большой награды в математике.

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com