Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Stirling numbers and Pascal triangles | Geometric Linear Algebra 23 | NJ Wildberger

Автор: Insights into Mathematics

Загружено: 2011-04-10

Просмотров: 28376

Описание:

When we interpret polynomials as sequences rather than as functions, new bases become important. The falling and rising powers play an important role in analysing general sequences through forward and backward difference operators.

The change from rising powers to ordinary powers, and from ordinary powers to falling powers give rise to two interesting families of numbers, called Stirling numbers of the first and second kind. We use Karamata notation, advocated by Knuth to describe these: brackets and braces. Combinatorial and number theoretic interpretations are mentioned.

We discuss the important relation between two bases of a a linear space and the corresponding change from one kind of coordinate vector to another. This is applied to study general polynomial sequences.

This lecture is not easy, and represents a high point of this course in Linear Algebra. However it introduces powerful and common techniques which are actually quite useful in a variety of practical applications.

CONTENT SUMMARY: pg 1: @00:08 Intro: (Stirling numbers and Pascal triangles); sequences; change of terminology @00:44 ; falling power; rising power; list of rising powers; summation notation and Stirling numbers @03:00;
pg 2: @04:55 James Stirling (1749), "Methodus Differentialis"; Stirling number notation warning @05:04 ; 'n bracket k' as Karamata notation (Knuth); Stirling numbers of the first kind; Change of basis rewritten from pg 1 @05:29 ; Stirling matrix of the first kind; remark about unconventional indexing of Stirling numbers @06:36;
pg 3: @07:13 Calculating Stirling numbers; Theorem (Recurrence relation: Stirling numbers); proof;
pg 4: @10:56 Pascal's triangle and binomial coefficients; recurrence relation for binomial coefficients; Pascal matrix;
pg 5: @14:08 Combinatorial interpretation of Sterling numbers;
pg 6: @17:34 Number theoretic interpretation of Sterling numbers; summary of Sterling number interpretation @21:50;
pg 7: @23:09 Sterling numbers of the 2nd kind; Inverting the Pascal matrices;
pg 8: @26:36 Inverting Stirling matrices; reintroduction of some ignored symmetry @27:48 ; Sterling matrix of the 2nd kind;
pg 9: @30:41 Definition of Stirling numbers of the second kind; 'n brace k' notation of Stirling numbers of the 2nd kind; Sterling matrix of the 2nd kind;
pg 10: @32:54 Combinatorial interpretation of Sterling_numbers_2nd_kind ; Theorem (Recurrence relation for Sterling_numbers_2nd_kind);
pg 11: @35:54 Statement of the importance of the Sterling numbers; important question @37:23 ; suggestion to review starting WLA1_pg7 @40:27;
pg 12: @40:48 Of primary importance to problems of practical application; Non_standard ideas; This is at the heart of change of basis @47:08;
pg 13: @47:26 Transpose a matrix and vector;
pg 14: @50:11 Application of this (effect of change of basis on coordinate vectors): analyse a polynomial sequence; Newtons formula; A very useful thing to be able to do @53:54;
pg 15: @54:44 General C: transpose of signed Stirling matrix of 1st kind;
pg 16: @55:30 Exercises 23.1-3;
pg 17: @56:13 Exercises 23.4-5; closing remarks @57:14; (THANKS to EmptySpaceEnterprise)

Video Chapters:
00:00 Introduction
4:56 James Stirling Methodus Differentialis
10:56 Pascal Matrix
14:08 Combinatorial interpretation
17:34 Number theoretic interpretation
23:08 Inverting Pascal matrices
26:36 Inverting Stirling matrices
30:40 Stirling numbers of the second kind
32:54 Combinatorial interpretation of Stirling numbers
50:11 Square pyramidal numbers
54:44 Transpose of signed Stirling matrix of first kind
************************
Screenshot PDFs for my videos are available at the website http://wildegg.com. These give you a concise overview of the contents of the lectures for various Playlists: great for review, study and summary.

My research papers can be found at my Research Gate page, at https://www.researchgate.net/profile/...

My blog is at http://njwildberger.com/, where I will discuss lots of foundational issues, along with other things.

Online courses will be developed at openlearning.com. The first one, already underway is Algebraic Calculus One at https://www.openlearning.com/courses/... Please join us for an exciting new approach to one of mathematics' most important subjects!

If you would like to support these new initiatives for mathematics education and research, please consider becoming a Patron of this Channel at   / njwildberger   Your support would be much appreciated.

Stirling numbers and Pascal triangles | Geometric Linear Algebra 23 | NJ Wildberger

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Кубические сплайны с использованием линейной алгебры | Геометрическая линейная алгебра 24 | NJ Wi...

Кубические сплайны с использованием линейной алгебры | Геометрическая линейная алгебра 24 | NJ Wi...

Meet the Stirling Numbers! (of the 2nd kind)

Meet the Stirling Numbers! (of the 2nd kind)

Bases of polynomial spaces | Geometric Linear Algebra 20 | NJ Wildberger

Bases of polynomial spaces | Geometric Linear Algebra 20 | NJ Wildberger

как подсчитать «циклические» перестановки — Числа Стирлинга.

как подсчитать «циклические» перестановки — Числа Стирлинга.

The Strangest Man Who Unified Physics (Paul Dirac)

The Strangest Man Who Unified Physics (Paul Dirac)

An elementary introduction to Special Relativity I | Geometric Linear Algebra B 37 | NJ Wildberger

An elementary introduction to Special Relativity I | Geometric Linear Algebra B 37 | NJ Wildberger

Change of coordinates and determinants | Geometric Linear Algebra 5 | NJ Wildberger

Change of coordinates and determinants | Geometric Linear Algebra 5 | NJ Wildberger

Oriented circles and 3D relativistic geometry I | Geometric Linear Algebra B 34 | NJ Wildberger

Oriented circles and 3D relativistic geometry I | Geometric Linear Algebra B 34 | NJ Wildberger

Числа Стирлинга — Волшебный дуэт

Числа Стирлинга — Волшебный дуэт

Catalan Numbers - Numberphile

Catalan Numbers - Numberphile

Math History (ancient to modern)

Math History (ancient to modern)

Polynomials and sequence spaces | Geometric Linear Algebra 22 | NJ Wildberger

Polynomials and sequence spaces | Geometric Linear Algebra 22 | NJ Wildberger

Каталонские числа. Часть I: Подсчёт триангуляций (Часть II с Майклом Пенном)

Каталонские числа. Часть I: Подсчёт триангуляций (Часть II с Майклом Пенном)

Length contraction, time dilation and velocity addition | Wild Linear Algebra B 39 | NJ Wildberger

Length contraction, time dilation and velocity addition | Wild Linear Algebra B 39 | NJ Wildberger

I Played My GM Mom in an OFFICIAL Chess Tournament!!!!!

I Played My GM Mom in an OFFICIAL Chess Tournament!!!!!

What If You Keep Slowing Down?

What If You Keep Slowing Down?

Математические секреты треугольника Паскаля — Ваджди Мухаммед Ратеми

Математические секреты треугольника Паскаля — Ваджди Мухаммед Ратеми

Brief introduction to Stirling numbers

Brief introduction to Stirling numbers

More bases of polynomial spaces | Geometric Linear Algebra 21 | NJ Wildberger

More bases of polynomial spaces | Geometric Linear Algebra 21 | NJ Wildberger

23. Differential Equations and exp(At)

23. Differential Equations and exp(At)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com