Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

E. Karimov :Multivariate Mittag-Leffler type functions associated with Prabhakar Fractional Calculus

Автор: Fractional Calculus Seminars @ SISSA

Загружено: 2025-05-30

Просмотров: 394

Описание:

Date: Friday, 30 May, 2025 - 15:00 to 16:00 CEST
Title : Multivariate Mittag-Leffler type functions associated with the Prabhakar Fractional Calculus
Speaker: Erkinjon Karimov, Ghent University

Hosted at: SISSA, International School of Advanced Studies, Trieste, Italy
Organizers : Pavan Pranjivan Mehta* and Arran Fernandez**
SISSA, International School of Advanced Studies, Italy
** Eastern Mediterranean University, Northern Cyprus

Keywords: Multivariate Mittag-Leffler type functions, Prabhakar Fractional Calculus, Fractional-order differential equations

Abstract

Certain bivariate and trivariate Mittag-Leffler-type functions are investigated, focusing on their Euler-type integral representations [1], [2], as well as upper and lower estimates [3]. These functions arise in the solutions of differential equations involving the Prabhakar fractional derivative [4]. We demonstrate how the derived estimates can be applied to solve direct and inverse problems for sub-diffusion and fractional wave equations [3], [5], [6], as well as for certain combinations of these equations [7].

Biography

Dr. Erkinjon Karimov is a Researcher specializing in partial differential equations of integer and fractional order and special functions, connected with such PDEs. He is affiliated with Ghent University, where he conducts research on direct and inverse problems for PDEs. Dr. Karimov has published more than 50 papers, contributing to advancements in direct and inverse problems for fractional-order PDEs and mixed-type PDEs.

Dr. Karimov holds a Ph.D. (2006) and D.Sc. (2020) from V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, where he focused on direct and inverse problems for PDEs of various types, including mixed-type. Throughout his career, he has collaborated with researchers from the University of Santiago de Compostela, the University of Las Palmas de Gran Canaria, Sultan Qaboos University, etc. His projects have been supported by the State Agency for Science and Technology of the Republic of Uzbekistan, ICMS (Great Britain), ICTP (Italy), TWAS-CAS (China). In addition to his research, Dr. Karimov is actively involved in teaching, mentoring, and managing scientific journals (https://mib.mathinst.uz), demonstrating his commitment to education and the development of future scientists. More information can be found at https://sites.google.com/view/erkinjo...

Bibliography

[1] A. Hasanov, E. Karimov, Euler-type integral representations for bi-variate Mittag-Leffler-type functions, Cybernetics and Systems Analysis 61(3) (2025), pp. 74–84.
[2] A. Hasanov, E. Karimov, On generalized Mittag-Leffler type functions of two variables, arXiv:2501.03918 (2025).
[3] A. Hasanov, E. Karimov, On a boundary-value problem in a bounded domain for a time-fractional diffusion equation with the Prabhakar fractional derivative, Bulletin of the Karaganda university: Mathematics series, 111(3) (2023), pp. 39–46.
[4] E. Karimov, N. Tokmagambetov, M. Toshpulatov, On a Mixed Equation Involving Prabhakar Fractional Order Integral-Differential Operators, Trends in Mathematics: Extended Abstracts 2021/2022. APDEGS 2021, 2(25) (2023), pp. 221–230.
[5] E. Karimov, K. Turdiev, D. Usmonov, Nonlocal problem for the time-fractional generalized telegraph equation with the Prabhakar fractional derivative, arXiv:2503.08274 (2025).
[6] E. karimov, K. Turdiev, Inverse problem for the time-fractional generalized telegraph equation, ResearchGate: DOI 10.13140/RG.2.2.18122.89285 (2025).
[7] E. Karimov, N. Tokmagambetov, M. Toshpulatov, Mixed partial differential equation: Forward problem linked with the wave-diffusion process, ResearchGate: 387959072 (2025)

E. Karimov :Multivariate Mittag-Leffler type functions associated with Prabhakar Fractional Calculus

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

O. Marichev : Integral transforms with Fox H-functions in kernels

O. Marichev : Integral transforms with Fox H-functions in kernels

Fractional differential equations: initialisation, singularity, and dimensions - Arran Fernandez

Fractional differential equations: initialisation, singularity, and dimensions - Arran Fernandez

Theory of fractional calculus

Theory of fractional calculus

Mittag-Leffler Functions: The Key to Fractional Calculus?

Mittag-Leffler Functions: The Key to Fractional Calculus?

Seminar on Analysis, Differential Equations and Mathematical Physics - Ekaterina Turilova

Seminar on Analysis, Differential Equations and Mathematical Physics - Ekaterina Turilova

Compute Numerically Mittag-Leffler Function  || Compute Numerically Mittag-Leffler Function

Compute Numerically Mittag-Leffler Function || Compute Numerically Mittag-Leffler Function

Y.Luchko:Fractional PDE invol. general fractional der. with Sonin kernel, anomalous diffusion model

Y.Luchko:Fractional PDE invol. general fractional der. with Sonin kernel, anomalous diffusion model

The Mittag Leffler Function: Definition, Examples, Properties

The Mittag Leffler Function: Definition, Examples, Properties

⚡️СЕНСАЦИЯ ИЗ АБУ-ДАБИ! Вот о чем реально договорились разведки! Итоги переговоров РФ и Украины

⚡️СЕНСАЦИЯ ИЗ АБУ-ДАБИ! Вот о чем реально договорились разведки! Итоги переговоров РФ и Украины

E.Kaslik:Prabhakar Kernels in Fractional Dynamics:from Matignon-type Stability to Two-Term Equations

E.Kaslik:Prabhakar Kernels in Fractional Dynamics:from Matignon-type Stability to Two-Term Equations

Древний Японский Секрет, Как Научиться Чему Угодно в 10 Раз Быстрее (Сюхари) | Мудрость Времени

Древний Японский Секрет, Как Научиться Чему Угодно в 10 Раз Быстрее (Сюхари) | Мудрость Времени

Y. Mishura: Fractional operators and fractional stochastic processes

Y. Mishura: Fractional operators and fractional stochastic processes

Как решить, дополнив квадрат (NancyPi)

Как решить, дополнив квадрат (NancyPi)

$1 vs $1,000,000,000 Футуристических Технологий!

$1 vs $1,000,000,000 Футуристических Технологий!

Почему эллипс это сложно и не существует формулы периметра эллипса

Почему эллипс это сложно и не существует формулы периметра эллипса

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

Пастухов Точка Невозврата Пройдена! Режим Обречён Вопрос Только Во Времени

Пастухов Точка Невозврата Пройдена! Режим Обречён Вопрос Только Во Времени

🔴Итоги переговоров в Абу-Даби Украины, России и США: что с Донбассом? DW Новости (24.01.2026)

🔴Итоги переговоров в Абу-Даби Украины, России и США: что с Донбассом? DW Новости (24.01.2026)

F. Cinque : Analysis of fractional Cauchy problems and time-changed stochastic processes

F. Cinque : Analysis of fractional Cauchy problems and time-changed stochastic processes

7 самых опасных продуктов на завтрак, 98% едят это каждый день.

7 самых опасных продуктов на завтрак, 98% едят это каждый день.

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com