Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Anomaly Detection 101 - Elizabeth (Betsy) Nichols Ph.D.

Автор: DevOpsDays Silicon Valley

Загружено: 2015-11-14

Просмотров: 39355

Описание:

This presentation surveys a collection of techniques for detecting anomalies in a DevOps environment. Each of the techniques has strengths and weaknesses that are illustrated via real-world (anonymized) customer data. Techniques discussed include deterministic and statistical models as well as uni-variate and multi-variate analytics. Examples are given that show concrete evidence where each can succeed and each can fail. This presentation is about concepts and how to think about alternative anomaly detection techniques. This presentation is not an academic discourse in math, statistics or probability theory.

Elizabeth A. Nichols (Betsy) is Chief Data Scientist at Netuitive, Inc. In this role she is responsible for leading the company's vision and technologies for analytics, modeling, and algorithms.

Betsy has applied mathematics and computer technologies to create systems for war gaming, space craft mission optimization, industrial process control, supply chain logistics, electronic trading, advertising networks, IT security and risk models, and network and systems management. She has co-founded three companies, all of which delivered analytics to commercial and government enterprises. Betsy graduated with an A.B. from Vassar College and a Ph.D. in Mathematics from Duke University. Check her out on LinkedIn (  / elizabethanichols  ) for more information.

Anomaly Detection 101 - Elizabeth (Betsy) Nichols Ph.D.

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

New Trends in Time Series Anomaly Detection

New Trends in Time Series Anomaly Detection

Unsupervised real-time anomaly detection and root cause estimation by Aitor Landete and Pablo Mateos

Unsupervised real-time anomaly detection and root cause estimation by Aitor Landete and Pablo Mateos

Time Series Anomaly Detection Techniques for Predictive Maintenance

Time Series Anomaly Detection Techniques for Predictive Maintenance

Automatically Find Patterns & Anomalies from Time Series or Sequential Data - Sean Law

Automatically Find Patterns & Anomalies from Time Series or Sequential Data - Sean Law

Jan van der Vegt: A walk through the isolation forest | PyData Amsterdam 2019

Jan van der Vegt: A walk through the isolation forest | PyData Amsterdam 2019

Practical Time-Series Forecast and Anomaly Detection in Python, Dr. Ahmed Abdulaal 20191028

Practical Time-Series Forecast and Anomaly Detection in Python, Dr. Ahmed Abdulaal 20191028

AI Agents: Transforming Anomaly Detection & Resolution

AI Agents: Transforming Anomaly Detection & Resolution

Anomaly Detection: Algorithms, Explanations, Applications

Anomaly Detection: Algorithms, Explanations, Applications

Introduction to Anomaly Detection for Engineers

Introduction to Anomaly Detection for Engineers

Изолирующий лес: древовидный подход к обнаружению выбросов (с понятным объяснением)

Изолирующий лес: древовидный подход к обнаружению выбросов (с понятным объяснением)

Anomaly detection with TensorFlow | Workshop

Anomaly detection with TensorFlow | Workshop

Isolation Forest for Outlier Detection within Python

Isolation Forest for Outlier Detection within Python

#145 - Anomaly Detection | Local Outlier Factor | LOF Algorithm

#145 - Anomaly Detection | Local Outlier Factor | LOF Algorithm

Anomaly detection in time series with Python | Data Science with Marco

Anomaly detection in time series with Python | Data Science with Marco

Tailai Wen: ADTK: An open-source Python toolkit for anomaly detection in... | PyData Austin 2019

Tailai Wen: ADTK: An open-source Python toolkit for anomaly detection in... | PyData Austin 2019

Он проделал путь от изучения греческого языка до получения самой большой награды в математике.

Он проделал путь от изучения греческого языка до получения самой большой награды в математике.

Detecting outliers and anomalies in realtime at Datadog - Homin Lee (OSCON Austin 2016)

Detecting outliers and anomalies in realtime at Datadog - Homin Lee (OSCON Austin 2016)

Unit8 Talks #7 - Fraud detection - A guide to building a financial transaction anomaly detector

Unit8 Talks #7 - Fraud detection - A guide to building a financial transaction anomaly detector

Autoencoder Forest for Anomaly Detection from IoT Time Series | SP Group

Autoencoder Forest for Anomaly Detection from IoT Time Series | SP Group

Anomaly Detection for Data Quality and Metric Shifts at Netflix | Netflix

Anomaly Detection for Data Quality and Metric Shifts at Netflix | Netflix

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]