Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

[PhD Thesis Defense] Generalizing Outside The Data Distribution through Compositional Generation

Автор: Yilun Du

Загружено: 2024-08-27

Просмотров: 4356

Описание:

[Abstract] Generative AI has led to stunning successes in recent years but is fundamentally limited by the amount of data available. This is especially limiting in the embodied setting – where an agent must solve new tasks in new environments. In this talk, I’ll introduce the idea of compositional generative modeling, which enables generalization beyond the training data by building complex generative models from smaller constituents. I’ll first introduce the idea of energy-based models and illustrate how they enable compositional generative modeling. I’ll then illustrate how such compositional models enable us to synthesize complex plans for unseen tasks at inference time. Finally, I'll show how such compositionality can be applied to multiple foundation models trained on various forms of Internet data, enabling us to construct decision-making systems that can hierarchically plan and solve long-horizon problems in a zero-shot manner.

[PhD Thesis Defense] Generalizing Outside The Data Distribution through Compositional Generation

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Diffusion and Score-Based Generative Models

Diffusion and Score-Based Generative Models

Learning Compositional Models of the World with Yilun Du

Learning Compositional Models of the World with Yilun Du

Generalizing Outside the Training Distribution through Compositional Generation: Yilun Du (MIT)

Generalizing Outside the Training Distribution through Compositional Generation: Yilun Du (MIT)

RI Seminar: Dieter Fox: Where's RobotGPT?

RI Seminar: Dieter Fox: Where's RobotGPT?

Thesis Defense - Layered Control Architectures: Constructive Theory and Application to Legged Robots

Thesis Defense - Layered Control Architectures: Constructive Theory and Application to Legged Robots

RIG Lecture Series - Algorithmic Foundations of Robot Learning

RIG Lecture Series - Algorithmic Foundations of Robot Learning

Stanford Seminar - Multitask Transfer in TRI’s Large Behavior Models for Dexterous Manipulation

Stanford Seminar - Multitask Transfer in TRI’s Large Behavior Models for Dexterous Manipulation

[GCV @ CVPR25] Kaiming He - Towards End-to-End Generative Modeling

[GCV @ CVPR25] Kaiming He - Towards End-to-End Generative Modeling

Chelsea Finn: Building Robots That Can Do Anything

Chelsea Finn: Building Robots That Can Do Anything

Tutorial: Efficient Gaussian Splatting | CVPR 2024

Tutorial: Efficient Gaussian Splatting | CVPR 2024

Больше, чем генераторы изображений: наука решения проблем с использованием теории вероятностей | ...

Больше, чем генераторы изображений: наука решения проблем с использованием теории вероятностей | ...

Yilun Du - Implicit Learning with Energy-Based Models | Nuro Technical Talks

Yilun Du - Implicit Learning with Energy-Based Models | Nuro Technical Talks

Flow-Matching vs Diffusion Models explained side by side

Flow-Matching vs Diffusion Models explained side by side

Stanford Seminar - Robot Skill Acquisition: Policy Representation and Data Generation

Stanford Seminar - Robot Skill Acquisition: Policy Representation and Data Generation

Почему диффузия работает лучше, чем авторегрессия?

Почему диффузия работает лучше, чем авторегрессия?

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

Planning with Diffusion for Flexible Behavior Synthesis

Planning with Diffusion for Flexible Behavior Synthesis

ЛУЧШАЯ БЕСПЛАТНАЯ НЕЙРОСЕТЬ Google, которой нет аналогов

ЛУЧШАЯ БЕСПЛАТНАЯ НЕЙРОСЕТЬ Google, которой нет аналогов

MIT Robotics - Russ Tedrake - Planning with Graphs of Convex Sets (in the age of foundation models)

MIT Robotics - Russ Tedrake - Planning with Graphs of Convex Sets (in the age of foundation models)

Dynamic Deep Learning | Richard Sutton

Dynamic Deep Learning | Richard Sutton

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]