Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Fast reinforcement learning with generalized policy updates (Paper Explained)

Автор: Yannic Kilcher

Загружено: 2020-08-23

Просмотров: 11090

Описание:

#ai #research #reinforcementlearning

Reinforcement Learning is a powerful tool, but it is also incredibly data-hungry. Given a new task, an RL agent has to learn a good policy entirely from scratch. This paper proposes a new framework that allows an agent to carry over knowledge from previous tasks into solving new tasks, even deriving zero-shot policies that perform well on completely new reward functions.

OUTLINE:
0:00 - Intro & Overview
1:25 - Problem Statement
6:25 - Q-Learning Primer
11:40 - Multiple Rewards, Multiple Policies
14:25 - Example Environment
17:35 - Tasks as Linear Mixtures of Features
24:15 - Successor Features
28:00 - Zero-Shot Policy for New Tasks
35:30 - Results on New Task W3
37:00 - Inferring the Task via Regression
39:20 - The Influence of the Given Policies
48:40 - Learning the Feature Functions
50:30 - More Complicated Tasks
51:40 - Life-Long Learning, Comments & Conclusion

Paper: https://www.pnas.org/content/early/20...

My Video on Successor Features:    • A neurally plausible model learns successo...  

Abstract:
The combination of reinforcement learning with deep learning is a promising approach to tackle important sequential decision-making problems that are currently intractable. One obstacle to overcome is the amount of data needed by learning systems of this type. In this article, we propose to address this issue through a divide-and-conquer approach. We argue that complex decision problems can be naturally decomposed into multiple tasks that unfold in sequence or in parallel. By associating each task with a reward function, this problem decomposition can be seamlessly accommodated within the standard reinforcement-learning formalism. The specific way we do so is through a generalization of two fundamental operations in reinforcement learning: policy improvement and policy evaluation. The generalized version of these operations allow one to leverage the solution of some tasks to speed up the solution of others. If the reward function of a task can be well approximated as a linear combination of the reward functions of tasks previously solved, we can reduce a reinforcement-learning problem to a simpler linear regression. When this is not the case, the agent can still exploit the task solutions by using them to interact with and learn about the environment. Both strategies considerably reduce the amount of data needed to solve a reinforcement-learning problem.

Authors:
André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup

Links:
YouTube:    / yannickilcher  
Twitter:   / ykilcher  
Discord:   / discord  
BitChute: https://www.bitchute.com/channel/yann...
Minds: https://www.minds.com/ykilcher
Parler: https://parler.com/profile/YannicKilcher
LinkedIn:   / yannic-kilcher-488534136  

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon:   / yannickilcher  
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Fast reinforcement learning with generalized policy updates (Paper Explained)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study (Paper Explained)

What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study (Paper Explained)

Reinforcement Learning with Augmented Data (Paper Explained)

Reinforcement Learning with Augmented Data (Paper Explained)

Meta-Learning through Hebbian Plasticity in Random Networks (Paper Explained)

Meta-Learning through Hebbian Plasticity in Random Networks (Paper Explained)

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Group Normalization (Paper Explained)

Group Normalization (Paper Explained)

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

LSTM is dead. Long Live Transformers!

LSTM is dead. Long Live Transformers!

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

LambdaNetworks: Modeling long-range Interactions without Attention (Paper Explained)

LambdaNetworks: Modeling long-range Interactions without Attention (Paper Explained)

Понимание GD&T

Понимание GD&T

Decision Transformer: Reinforcement Learning via Sequence Modeling (Research Paper Explained)

Decision Transformer: Reinforcement Learning via Sequence Modeling (Research Paper Explained)

Математики открывают странную новую бесконечность

Математики открывают странную новую бесконечность

Dreamer v2: Mastering Atari with Discrete World Models (Machine Learning Research Paper Explained)

Dreamer v2: Mastering Atari with Discrete World Models (Machine Learning Research Paper Explained)

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Learning to summarize from human feedback (Paper Explained)

Learning to summarize from human feedback (Paper Explained)

[Classic] Generative Adversarial Networks (Paper Explained)

[Classic] Generative Adversarial Networks (Paper Explained)

Rethinking Attention with Performers (Paper Explained)

Rethinking Attention with Performers (Paper Explained)

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]