Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Meta-Learning through Hebbian Plasticity in Random Networks (Paper Explained)

Автор: Yannic Kilcher

Загружено: 2020-08-12

Просмотров: 14166

Описание:

#ai #neuroscience #rl

Reinforcement Learning is a powerful tool, but it lacks biological plausibility because it learns a fixed policy network. Animals use neuroplasticity to reconfigure their policies on the fly and quickly adapt to new situations. This paper uses Hebbian Learning, a biologically inspired technique, to have agents adapt random networks to high-performing solutions as an episode is progressing, leading to agents that can reconfigure themselves in response to new observations.

OUTLINE:
0:00 - Intro & Overview
2:30 - Reinforcement Learning vs Hebbian Plasticity
9:00 - Episodes in Hebbian Learning
10:00 - Hebbian Plasticity Rules
18:10 - Quadruped Experiment Results
21:20 - Evolutionary Learning of Hebbian Plasticity
29:10 - More Experimental Results
34:50 - Conclusions
35:30 - Broader Impact Statement

Videos:   / 1280544779630186499  
Paper: https://arxiv.org/abs/2007.02686

Abstract:
Lifelong learning and adaptability are two defining aspects of biological agents. Modern reinforcement learning (RL) approaches have shown significant progress in solving complex tasks, however once training is concluded, the found solutions are typically static and incapable of adapting to new information or perturbations. While it is still not completely understood how biological brains learn and adapt so efficiently from experience, it is believed that synaptic plasticity plays a prominent role in this process. Inspired by this biological mechanism, we propose a search method that, instead of optimizing the weight parameters of neural networks directly, only searches for synapse-specific Hebbian learning rules that allow the network to continuously self-organize its weights during the lifetime of the agent. We demonstrate our approach on several reinforcement learning tasks with different sensory modalities and more than 450K trainable plasticity parameters. We find that starting from completely random weights, the discovered Hebbian rules enable an agent to navigate a dynamical 2D-pixel environment; likewise they allow a simulated 3D quadrupedal robot to learn how to walk while adapting to different morphological damage in the absence of any explicit reward or error signal.

Authors: Elias Najarro, Sebastian Risi

Links:
YouTube:    / yannickilcher  
Twitter:   / ykilcher  
Discord:   / discord  
BitChute: https://www.bitchute.com/channel/yann...
Minds: https://www.minds.com/ykilcher
Parler: https://parler.com/profile/YannicKilcher
LinkedIn:   / yannic-kilcher-488534136  

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon:   / yannickilcher  
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Meta-Learning through Hebbian Plasticity in Random Networks (Paper Explained)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Fast reinforcement learning with generalized policy updates (Paper Explained)

Fast reinforcement learning with generalized policy updates (Paper Explained)

[Classic] Generative Adversarial Networks (Paper Explained)

[Classic] Generative Adversarial Networks (Paper Explained)

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Predictive Coding Approximates Backprop along Arbitrary Computation Graphs (Paper Explained)

Predictive Coding Approximates Backprop along Arbitrary Computation Graphs (Paper Explained)

Алгоритм памяти, вдохновлённый работой мозга

Алгоритм памяти, вдохновлённый работой мозга

50 Best of Chopin: Nocturnes, Études, Waltzes...

50 Best of Chopin: Nocturnes, Études, Waltzes...

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Dendrites: Why Biological Neurons Are Deep Neural Networks

Dendrites: Why Biological Neurons Are Deep Neural Networks

Hopfield Networks is All You Need (Paper Explained)

Hopfield Networks is All You Need (Paper Explained)

Learning to summarize from human feedback (Paper Explained)

Learning to summarize from human feedback (Paper Explained)

A bio-inspired bistable recurrent cell allows for long-lasting memory (Paper Explained)

A bio-inspired bistable recurrent cell allows for long-lasting memory (Paper Explained)

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Backpropagation and the brain

Backpropagation and the brain

Математики открывают странную новую бесконечность

Математики открывают странную новую бесконечность

Почему взрываются батарейки и аккумуляторы? [Veritasium]

Почему взрываются батарейки и аккумуляторы? [Veritasium]

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Rethinking Attention with Performers (Paper Explained)

Rethinking Attention with Performers (Paper Explained)

Feedback Transformers: Addressing Some Limitations of Transformers with Feedback Memory (Explained)

Feedback Transformers: Addressing Some Limitations of Transformers with Feedback Memory (Explained)

The Prefrontal Cortex as a Meta-Reinforcement Learning System

The Prefrontal Cortex as a Meta-Reinforcement Learning System

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]