Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Lisa Sauermann (MIT/IAS): Finding solutions with distinct variables to systems of equations over F_p

Автор: Webinar in Additive Combinatorics

Загружено: 2021-05-24

Просмотров: 746

Описание:

Let us fix a prime p and a homogeneous system of m linear equations a_{j,1}x_1+\dots+a_{j,k}x_k=0 for j=1,\dots,m with coefficients a_{j,i}\in\mathbb{F}_p. Suppose that k\geq 3m, that a_{j,1}+\dots+a_{j,k}=0 for j=1,\dots,m and that every m\times m minor ofthe m\times k matrix (a_{j,i})_{j,i} is non-singular. Then we prove that for any (large) n, any subset A\subseteq\mathbb{F}_p^n of size |A| greater than C\cdot \Gamma^n contains a solution (x_1,\dots,x_k)\in A^k to the given system of equations such that the vectors x_1,\dots,x_k\inA are all distinct. Here, C and \Gamma are constants only depending on p, m and k such that \Gamma less than p. The crucial point here is the condition for the vectors x_1,\dots,x_k in the solution (x_1,\dots,x_k)\in A^k to be distinct. If we relax this condition and only demand that x_1,\dots,x_k are not all equal, then the statement would follow easily from Tao’s slicerank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slicerank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.

Lisa Sauermann (MIT/IAS): Finding solutions with distinct variables to systems of equations over F_p

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Natasha Morrison (Victoria): Uncommon systems of equations

Natasha Morrison (Victoria): Uncommon systems of equations

Big Picture: Integrals

Big Picture: Integrals

Lecture by  Lisa Sauermann

Lecture by Lisa Sauermann

MIT 2006 Integration Bee

MIT 2006 Integration Bee

Cosmology WS2025/26

Cosmology WS2025/26

Freddie Manners (UCSD): Iterated Cauchy--Schwarz arguments and true complexity

Freddie Manners (UCSD): Iterated Cauchy--Schwarz arguments and true complexity

Puzzles with beautiful solutions

Puzzles with beautiful solutions

Solving all the integrals from the 2023 MIT integration bee finals

Solving all the integrals from the 2023 MIT integration bee finals

Derivative of sin x and cos x

Derivative of sin x and cos x

Guy Moshkovitz (CUNY): An Optimal Inverse Theorem

Guy Moshkovitz (CUNY): An Optimal Inverse Theorem

Allysa Lumley (CRM): Primes in short intervals - Heuristics and calculations

Allysa Lumley (CRM): Primes in short intervals - Heuristics and calculations

The Exponential Function

The Exponential Function

Orit Raz (HUJI): Expanding polynomials and the discretized Elekes-R\'onyai theorem

Orit Raz (HUJI): Expanding polynomials and the discretized Elekes-R\'onyai theorem

Benny Sudakov (ETH): Small doubling, atomic structure and l-divisible set families

Benny Sudakov (ETH): Small doubling, atomic structure and l-divisible set families

Bhavik Mehta (Cambridge): Formalising a proof on unit fractions

Bhavik Mehta (Cambridge): Formalising a proof on unit fractions

Least squares | MIT 18.02SC Multivariable Calculus, Fall 2010

Least squares | MIT 18.02SC Multivariable Calculus, Fall 2010

Computing the Singular Value Decomposition | MIT 18.06SC Linear Algebra, Fall 2011

Computing the Singular Value Decomposition | MIT 18.06SC Linear Algebra, Fall 2011

Ben Green (Oxford): Quadratic forms in 8 prime variables

Ben Green (Oxford): Quadratic forms in 8 prime variables

Lagrange multipliers (3 variables) | MIT 18.02SC Multivariable Calculus, Fall 2010

Lagrange multipliers (3 variables) | MIT 18.02SC Multivariable Calculus, Fall 2010

Niels Bohr Explains Why the Past Isn’t Really Gone | Time, Quantum Physics & Reality

Niels Bohr Explains Why the Past Isn’t Really Gone | Time, Quantum Physics & Reality

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com