Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

1W-MINDS, Dec. 4: Minxin Zhang (UCLA), Structure-Aware Adaptive Nonconvex Optimization for Deep...

Автор: Mark Iwen

Загружено: 2025-12-04

Просмотров: 36

Описание:

Structure-Aware Adaptive Nonconvex Optimization for Deep Learning and Scientific Computing

Modern machine learning and scientific computing pose optimization challenges of unprecedented scale and complexity, demanding fundamental advances in both theory and algorithmic design for nonconvex optimization. This talk presents recent advances that address these challenges by exploiting matrix and tensor structures, integrating adaptivity, and leveraging sampling techniques. In the first part, I introduce AdaGO, a new optimizer that combines orthogonalized momentum updates with adaptive learning rates. Building on the recent success of the Muon optimizer in large language model training, AdaGO incorporates an AdaGrad-type stepsize that scales orthogonalized update directions by accumulated past gradient norms. This design preserves the structural advantage of orthogonalized updates while adapting stepsizes to noise and the optimization landscape. We establish optimal convergence rates for smooth nonconvex functions and demonstrate improved performance over Muon and Adam on classification and regression tasks. The second part focuses on zeroth-order global optimization. We develop a theoretical framework for inexact proximal point (IPP) methods for global optimization, establishing convergence guarantees when proximal operators are estimated either deterministically or stochastically. The quadratic regularization in the proximal operator induces a concentrated Gibbs measure landscape that facilitates effective sampling. We propose two sampling-based algorithms: TT-IPP, which constructs a low-rank tensor-train (TT) approximation using a randomized TT-cross algorithm, and MC-IPP, which employs Monte Carlo integration. Both IPP algorithms adaptively balance efficiency and accuracy in proximal operator estimation, achieving strong performance across diverse benchmark functions and applications. Together, these works advance structure-aware adaptive first-order optimization for deep learning and zeroth-order global optimization in scientific computing.

1W-MINDS, Dec. 4:  Minxin Zhang (UCLA), Structure-Aware Adaptive Nonconvex Optimization for Deep...

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

1W-MINDS, Nov 6:  Bohan Chen (Caltech) Learning Enhanced Ensemble Filters

1W-MINDS, Nov 6: Bohan Chen (Caltech) Learning Enhanced Ensemble Filters

Who's Adam and What's He Optimizing? | Deep Dive into Optimizers for Machine Learning!

Who's Adam and What's He Optimizing? | Deep Dive into Optimizers for Machine Learning!

1W-MINDS, Oct. 30:   Ethan Epperly (UC Berkeley)Column subset selection, active learning, and...

1W-MINDS, Oct. 30: Ethan Epperly (UC Berkeley)Column subset selection, active learning, and...

1W-MINDS, Oct. 23:  Petar Nizić-Nikolac (ETH Zurich),  Matrix Chaos Inequalities and Chaos of...

1W-MINDS, Oct. 23: Petar Nizić-Nikolac (ETH Zurich), Matrix Chaos Inequalities and Chaos of...

1W-MINDS, Sept. 4, 2025:  Claire Boyer (IMO), A statistical tour of physics-informed learning

1W-MINDS, Sept. 4, 2025: Claire Boyer (IMO), A statistical tour of physics-informed learning

Арестович & Шелест: День 1388. Дневник войны. Сбор для военных👇

Арестович & Шелест: День 1388. Дневник войны. Сбор для военных👇

1W-MINDS, Nov 13:  Bubacarr Bah (London School of Hygeine), Analysis of Gradient Descent for Deep...

1W-MINDS, Nov 13: Bubacarr Bah (London School of Hygeine), Analysis of Gradient Descent for Deep...

1W-MINDS, Sept. 11, 2025:  Axel Flinth (Umeå University), Do neural networks learn symmetries in ...

1W-MINDS, Sept. 11, 2025: Axel Flinth (Umeå University), Do neural networks learn symmetries in ...

1W-Minds, May 8, 2025: Filip Elvander, Aalto University: Optimal transport for inverse problems in..

1W-Minds, May 8, 2025: Filip Elvander, Aalto University: Optimal transport for inverse problems in..

Stanford CS25: V5 I Large Language Model Reasoning, Denny Zhou of Google Deepmind

Stanford CS25: V5 I Large Language Model Reasoning, Denny Zhou of Google Deepmind

1W-MINDS, Oct. 16:  Alex Cloninger (University of California, San Diego),  From Local Views to...

1W-MINDS, Oct. 16: Alex Cloninger (University of California, San Diego), From Local Views to...

1W-MINDS, Sept. 25:  Shay Gilpin (University of Arizona), Inaccurate variance evolution implied...

1W-MINDS, Sept. 25: Shay Gilpin (University of Arizona), Inaccurate variance evolution implied...

Q2B24 Silicon Valley | Scott Aaronson, California Institute of Technology

Q2B24 Silicon Valley | Scott Aaronson, California Institute of Technology

25. Stochastic Gradient Descent

25. Stochastic Gradient Descent

1W-Minds, April 24, 2025:  Donsub Rim, Low Rank Neural Representation of Hyperbolic Conservation Law

1W-Minds, April 24, 2025: Donsub Rim, Low Rank Neural Representation of Hyperbolic Conservation Law

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

Terence Tao | UCLA Connects: Bruin Talks

Terence Tao | UCLA Connects: Bruin Talks

Как реорганизовать невероятно сложную бизнес-логику (шаг за шагом)

Как реорганизовать невероятно сложную бизнес-логику (шаг за шагом)

1W-MINDS, Oct. 9:  Anna Veselovska (Technical University of Munich),  Gradient Descent and...

1W-MINDS, Oct. 9: Anna Veselovska (Technical University of Munich), Gradient Descent and...

Stanford CS231N | Spring 2025 | Lecture 3: Regularization and Optimization

Stanford CS231N | Spring 2025 | Lecture 3: Regularization and Optimization

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]